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Chapter VI-7 
Example Problems 
 
 
VI-7-1.  Introduction 
 
“Only the application makes the rod into a lever” is the famous remark of the philosopher Ludwig 
Wittgenstein (Pitcher 1964).  All engineers remember their university days (and nights) doing homework 
problems that turned the lectures (rod) into useful information and tools (lever) by the application of the 
materials presented.  Those textbooks with many example problems (and answers to the homework 
problems) always rate as the best.   
 
The Coastal Engineering Manual (CEM) is divided into six parts.  The first four parts mainly cover the 
science surrounding the subject while the remaining Parts V and VI summarize the latest engineering 
knowledge, studies, designs, and constructions.  Part VI-7 has been set aside for example problems.  This 
chapter includes wave runup, wave overtopping, armor-layer stability, and forces on vertical-front 
structures.   
 
The single, most important coastal engineering advance has been the use of irregular water-wave spectra 
in the analytical treatment, physical (laboratory) experiments, and numerical model simulations to study 
wave runup, overtopping, and armor-layer stability.  Coastal engineers must adopt this new technology 
quickly to prepare more cost-effective and safe designs in the future.   
 
Throughout the example problems chapter, several references to the Shore Protection Manual (1984) are 
made.   By referencing the older document, an attempt has been made to identify differences in 
engineering practice between the older Shore Protection Manual and the newer Coastal Engineering 
Manual.   
 
VI-7-2.  Wave Runup 
 

EXAMPLE PROBLEM VI-7-1 
 

FIND: 
 The surf-similarity parameter (also called the Iribarren number) for use in wave runup and 
wave overtopping calculations for long-crested, irregular waves on impermeable (without water 
penetration) and permeable slopes.  
 
GIVEN: 
 An impermeable structure has a smooth slope of 1 on 2.5 and is subjected to a design 
significant wave, Hs = 2.0 m (6.6 ft) measured at a gauge located in a depth, d = 4.5 m (14.8 ft).  
Design wave peak period is Tp = 8 s.  Water depth at structure toe at high water is dtoe = 3.0 m (9.8 ft).  
(Assume no change in the refraction coefficient between the structure and the wave gauge.) 
 
SOLUTION: 
 The surf-similarity parameter for irregular waves depends on the wave steepness and structure 
slope.  Two definitions are given in Equation VI-5-2 formulated with either the peak wave period, Tp or 
the mean wave period, Tm; but both use the significant wave height at the toe of the structure. 
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EXAMPLE PROBLEM VI-7-1 (Continued) 
 
 Ideally, a spectral wave model would be used to shoal the irregular wave Hs to the structure 
toe.  However, for purposes of illustration, it is assumed that Hs will shoal according to linear wave 
theory.  For swell-type spectra this is reasonable assumption, but linear shoaling overestimates 
shoaling of fully saturated storm spectra.   
 
Item 1.  Linear, regular wave shoaling (illustrated by several of the available methods). 
 
 (a) Deep water. 
 
First calculate the deep water, unrefracted wave height, HoN from where measured back out to deep 
water.  Using the depth where waves measured, and assuming T = Tp = 8 s and H = Hs gives 
 

 
( )

( )( )2 22
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9.81 m/s 8 so

d d
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(1) From the Shore Protection Manual (1984), Table C-1, Appendix C for d/Lo = 0.0450. 
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(2)  or, using ACES (Leenknecht et al. 1992), Snell’s Law, crest angle = 0.0E 

 
Ho

′ = 1.92 m (6.3 ft)  
 

(3) or, using explicit approximations (e.g., Nielsen 1984) 
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EXAMPLE PROBLEM VI-7-1 (Continued) 

 
gives 
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 (b) Toe of structure 
 
Next, shoal the deepwater wave to a depth, d = 3.0 m (9.8 ft) at the toe of the structure 
 
 (1) From the Shore Protection Manual (1984), Table C-1, Appendix C for 
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( ) ( )
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 (2) From ACES, Snell’s law, crest angle = 0.0E.   
 
 Htoe = 2.161 (7.09 ft) 
 
 (3) From explicit approximations 
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EXAMPLE PROBLEM VI-7-1 (Continued) 
 
Item 2.  Deepwater wave steepness, sop 
 

 

( )
( ) ( )

( )2 22

2 2 2.16 m

9.81 m/s 8 s
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Item 3.  Surf-similarity parameter, >op 
 
Finally, the surf-similarity parameter,  >op as defined by Equation VI-5-2 gives 
 

 
tan 1/ 2.5 0.4

0.14690.02162

α
ξ ≡ = =op

ops  

 
Therefore, 
 
 ξop = 2.72 
 
Note that the subscript notation means using the deepwater wavelength, Lo, and the peak wave period, 
Tp, to calculate >op.   
 
Item 4.  Surf-similarity parameter, >om 
 
The mean wave period, Tm, requires knowledge of variations in the width of the wave spectrum.  
From   Section VI-5-2-a-(3)-(b) for the theoretical spectrums 
 
 JONSWAP spectra Tm/Tp = 0.79 to 0.87 
 
 or 
 
 PIERSON-MOSKOWITZ spectra Tm/Tp = 0.71 to 0.82 
 
Therefore, assuming Tm/Tp = 0.76, gives Tm = 6.1 s, hence 
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EXAMPLE PROBLEM VI-7-1 (Continued) 
 
Therefore, 
 

 

tan 1/ 2.5 0.4
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≡ = =
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Both >op and >om are employed in wave runup and overtopping formulations.   
 
DISCUSSION:  In general (for either >op or >om ) 
 

 

( )

( )

( ) ( )

2

1 / 2

1 / 2

1 / 2

2

2

or

cot

tan

tan

o

o

s s

o

o

o

s

o

s

H H

L gT

T

H
g

T

K H

s

s

ξ

π

ξ
π

ξ
α

α

α

≡

≡ =

≡

≡

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 
where k is a constant.   
 
 (1)  As T increases, >o  increases 
 
 (2)  As cot " increases (flatter slope), >o decreases 
 

(3) As Hs increases, >o decreases, nonlinearly 
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 EXAMPLE PROBLEM VI-7-2 

 
FIND: 
  (a) The height above the still-water level (SWL) to which a new revetment must be built to 
prevent wave overtopping by the design wave. The structure is to be impermeable. 
 
  (b) The reduction in required structure height if uniform-sized armor stone is placed on the slope. 
 
GIVEN: 
  An impermeable structure has a smooth slope of 1 on 2.5 and is subjected to a design, significant 
wave Hs = 2.0 m (6.6 ft) measured at a gauge located in a depth d = 4.5 m (14.8 ft).  Design wave 
peak period is Tp = 8 s.  Water depth at structure toe at high water is dtoe = 3.0 m (9.8 ft).   
 
SOLUTION: 
 From Example Problem VI-7-1, linear wave theory estimates the wave height due to wave 
shoaling as 
 
 ( ) ( )2.16 m 7.1fts toeH =  
 
and the surf-similarity parameter as 
 

ξop = 2.72 

To prevent wave overtopping, the wave runup value at the 2 percent probability of exceedance level is 
calculated.  Figure VI-5-3 displays the considerable scatter in the data for smooth slopes, irregular, 
long-crested, head-on waves and Table VI-5-2 gives the coefficients for use in Equation VI-5-3 when 
 
 >op > 2.5 
 
Namely 
 

( )
( )

2% 0.2 4.5

0.2 2.72 4.5 0.544 4.5 3.956

u
op

s toe

R
H

ξ= − +

= − + = − + =

 

 
 

Ru2% = 3.956 (2.16 m) = 8.545 m (28.0 ft) 
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EXAMPLE PROBLEM VI-7-2 (Continued) 
 
 So that, 
 
 (a) Smooth slopes 
 
 (1) To prevent overtopping; Ru2% = 8.55 m (28.1 ft) 
 
(Note that (r =  (b =  (h = ($ = 1.0 are taken in Equation VI-5-3 for smooth, no berm, Rayleigh 
distribution, and zero incidence angle conditions, respectively.)   
 
Another set of runup data for smooth slopes is presented in Figure VI-5-5 and Equation VI-5-6 (from 
de Waal and van der Meer 1992).  When  
 
  >op > 2.0 
 
namely 

 
( )

2% 3.0u

s toe

R

H
=  

 
hence, 
 
 (2) To prevent overtopping; Ru2% = 3.0 (2.18 m) = 6.48 m (21.3 ft) 
 
Note that the data in Figure VI-5-5 is for slopes milder than 1 on 2.5, and thus may not be appropriate 
for this example.   
 
 (b) Rough slopes 
 
The surface roughness reduction factor  (r for Equation VI-5-3 is given in Table VI-5-3 and lies in the 
range, (r = 0.5-0.6 for one or more layers of rock.   
 
 Use (r = 0.55 to get 
 

(1) Equation VI-5-3  ( )
( )2% 3.956 3.956 0.55 2.176u

r

s toe

R

H
γ= = =  

 
hence 
 
 Ru2% = 2.176 (2.16 m) = 4.70 (15.4 ft) 
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EXAMPLE PROBLEM VI-7-2 (Continued) 
 
and 
 

 (2) Equation VI-5-6  ( )
( )2% 3.0 3.0 0.55 1.65u

r

s toe

R

H
γ= = =  

 
 Ru2% = 1.65 (2.16 m) = 3.56 m (11.7 ft)  
 
 
 (3) The Delft Hydraulics test program (Table VI-5-4) also provided data for impermeable 
rock slopes.  Here, the surf-similarity parameter based on mean wave period, >om, is employed to 
develop design Equation VI-5-12 with coefficients in Table VI-5-5 for a wide range of exceedance 
probabilities.  The  >om-value for this example (>om = 2.07) was estimated in Example Problem VI-7-1. 
 
When >om > 1.5 
 

( )
( )

( )

0.462%

0.46

1.17
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u
om

s toe

R

H
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= =

 

 
Therefore, Ru2% = 1.635 (2.16 m) = 3.353 m (11.6 ft)  
 
using coefficients for B and C at the 2% exceedance probability level.  This result is very close to that 
in the preceding Equation VI-5-6 (2) taking (r = 0.55.   
 

(4) Partial safety factors, (H and (z and 2%
ˆ

uR .  The Delft Hydraulics data set has been 
analyzed for partial safety factors as discussed in Part VI-6 and presented in Table VI-6-17.   
 
Assume the annual failure probability Pf = 0.10 (90% reliability).  For relatively low uncertainty in 
knowledge of the wave height (FNFHS = 0.05) the values associated with Equation VI-6-57 yield 
 
  (H (z = 1.2 (1.06) = 1.272 
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EXAMPLE PROBLEM VI-7-2 (Concluded) 
 
and a probabilistic estimate, 2%

ˆ
uR = 1.272 (3.53 m) = 4.49 m (14.7 ft).  If the uncertainty is higher 

regards wave height (FNFHS = 0.2) then  
 
 (H (z = 1.3 (1.08) = 1.404 
 

and a probabilistic estimate, R̂u2% = 1.404 (3.53 m) = 4.96 m (16.3 ft).   
 
The range of 2%

ˆ
uR  = 4.5-5.0 m (14.8-16.4 ft) brackets the estimate of Ru2% = 4.7 m (15.4 ft) as found 

from Equation VI-5-3.  The higher estimate of the Ru2% value found from Equation VI-5-3 could also 
be explained as being reliable at the 90-percent annual level.   
 
DISCUSSION:   
 As seen in Figure VI-5-3, at >op = 2.5, Ru2%/Hs reaches a maximum value.  Solving for the 
variables involved in >op gives approximately 
 
  Metric system 
 

     
( )1/ 2

(tan )
2.0p

toe

T

H

α
=  

 
  English system 
 

     
( )1/ 2

(tan )
1.10p

toe

T

H

α
=  

 
For the preceding example, keeping tan " = 0.4, Htoe = 2.16 m gives  
 
    (Tp) = 7.35 s for maximum runup 
 
For the preceding example, keeping Tp = 8.0 s, Htoe = 2.16 m gives 
 
    tan " = 0.36, cot " = 2.7 for maximum runup.   
 
Using a steeper or flatter slope will reduce the wave runup, all else being equal.   
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EXAMPLE PROBLEM VI-7-3 
 
FIND: 
 The height above the SWL to which a rock-armored structure (permeable) should be built to 
prevent wave overtopping by the design wave.   
 
GIVEN: 
  The same information for Example Problem VI-7-2 as summarized as follows, but now for a 
permeable breakwater (jetty) structure 
 
 slope = 1:2.5 
 Hs = 2.0 m (6.6 ft) 
 measured at d = 4.5 m (14.8 ft) 
 Tp = 8 s 
 dtoe = 3.0 m (9.8 ft) 
 >om = 2.07 
 (Hs)toe = 2.16 m 
 
SOLUTION: 
 Core permeability may significantly influence wave runup.  Notational permeability coefficients 
are defined in Figure VI-5-11.  The previous Example Problem VI-7-2 was for P = 0.1 defined as 
impermeable.  Test results shown in Figures VI-5-12 are with P = 0.1 and P = 0.5 and clearly reveal 
the runup reduction when >om > 3 for permeable structures.  Equation VI-5-13 has been developed as 
the central fit to the permeable data with coefficients again found in Table VI-5-5.  For Ru2%, B = 
1.17, C = 0.46, and D = 1.97.  Selection of the appropriate equation requires calculation of 
 

 ( ) ( )
1

0.461/ 2.171.97
/ 1.68 3.10

1.17
CD B = = =⎛ ⎞

⎜ ⎟
⎝ ⎠

 

 
Because 1.5 < >om < (D/B)1/C, use the equation 
 

 ( )
( )

( )

2%

0.461.17 2.07 1.635

ξ=

= =

Cu
om

s toe

R
B

H  

 
Therefore, Ru2% = 1.635 (2.16 m) = 3.53 m (11.6 ft), and this is a similar result as for P = 0.1, 
impermeable slopes.   
 
For the 2% runup exceedence level a value of 
 

 
tan

3.10
α

ξ ≡ ≥om

oms
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EXAMPLE PROBLEM VI-7-3 (Concluded) 
 
is the point where the permeable core begins to reduce wave runup.  Longer period waves will 
increase >om, but the runup remains constant because of the structure permeability.  At this limit,  
 

 
( )

2% 1.97 (see Table VI-5-5)= =u

s toe

R
D

H
 

 
Therefore,  
 
 ( ) ( )2% max 1.97 (2.16 m) = 4.25 m (13.9 ft) for 9.1 sec 12u m pR T T s= ≥ ≈  
 
for a slope of 1 to 2.5.   
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EXAMPLE PROBLEM VI-7-4 
 
FIND: 
 The height above the still-water level to which a revetment must be built to prevent wave 
overtopping by the design wave (same as Example Problem VI-7-2) but for the following conditions: 
 
 (a) Statistical distributions of wave runup 
 
 (b) Influence of shallow water on wave runup 
 
 (c) Influence of wave angle and directional spreading on wave runup 
 
GIVEN: 
 Same conditions as Example Problem VI-7-2 for smooth slope 
 
SOLUTION: 
 Equation VI-5-3 holds in general for any Rui% defined as the runup level exceeded by i% of 
the incident waves.  Coefficients A and C depend on both >op and i for Rayleigh distributed wave 
heights.   
 
 (a) Statistical distributions 
 
 (1) Significant runup.  Figure VI-5-4 displays the data scatter and Table VI-5-2 provides 
coefficients to calculate the significant wave runup, Rus.  Again from Example Problem VI-7-1  
 
 ( ) 2.16 m (7.1 ft)=s toe

H  
and 
 ξop = 2.72 
 
For Rus in the range 2 < >op < 9 
 

 ( )
( )

0.25 3.0

0.25 2.72 3.0 0.68 3.0 2.32

us
op

s toe

R
H

ξ= − +

= − + = − + =

 

 
therefore, 
 
 Rus = 2.32 (2.16 m) = 5.01 m (16.4 ft) 
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EXAMPLE PROBLEM VI-7-4 (Continued) 
 
The Shore Protection Manual (1984) calculated a runup value of 5.6 m (18.4 ft) for Example Problem 
No. 4 for the same data taking the design wave as the significant wave height.  The Rayleigh 
distribution for wave heights gives the following relationships for extreme events 
 

 

0.1 0.1

0.135

0.02

0.01

1.072

1.398

1.516

= =

=

=

s

s

s

H H
H H

H
H

H
H

 

 
If the wave runup also followed a Rayleigh distribution, then it might be expected that 
 

0.2 1.398u

us

R
R

=  

gives 
 
 Ru0.2 = 1.398 (5.01 m) = 7.0 m (23.0 ft)  
 
This result is much lower than Ru2% = 8.55 m (28.1 ft) calculated in Example Problem-7-2 for the 
smooth slope.  In general, values for Rus and Ru2% calculated from Equation VI-5-3 and coefficients in 
Table VI-5-2 do not follow a Rayleigh distribution for wave runup.   
 
 (2) Statistical distribution of runup on permeable slopes 
 
For the following restrictions1: (1) Rayleigh distributed wave heights 
   (2) Permeable, rock armored slopes 
   (3) Slope, cot " > 2 
Equation VI-5-15 says  
 
 Rup% = B (-ln p)1/C 
 
where 
 
 Rup% = runup level exceeded by p% of runup 
 
and  
 B, C are calculated from Equation VI-5-16 and 17, respectively 
 
________________________ 
1 See discussion, p. VI-7-16.   
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EXAMPLE PROBLEM VI-7-4 (Continued) 
 
From Example Problem VI-7-1  
 
 >om = 2.07 (Som = 0.03718) 
 
and using the values for the permeable slope in Example Problem VI-7-3 
  
 P = 0.5 
  
 tan " = 0.4 
 
Equation VI-5-18 gives 
 

 

( ) ( )[ ]

( )( ) ( )[ ]

( )

1/ 0.75

1/ 1.250.3

0.8

0.35.77

5.77 0.5 0.4

2.964

2.385

tan
P

omc Pξ α
+

=

=

=

=

 

 
Because 
 
 >om < >omc 
 
The value of C in Equation VI-5-17 is given for plunging waves as 
 

 

( )
( )

3/ 4

3/ 4

3.0

3.0 2.07 1.738
and
1 0.5754

omC

C

ξ −

−

=

= =

=

 

 
(NOTE: When C = 2, Equation VI-5-15 becomes the Rayleigh distribution) 
 
The scale parameter from Equation VI-15-16 becomes 
 
 ( ) ( )1/ 4 0.20.4 cotα− −= ⎡ ⎤

⎣ ⎦s omB H s  

 
or 
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EXAMPLE PROBLEM VI-7-4 (Continued) 
 

 

( ) ( )

( )( )[ ]
[ ]

1/ 4 0.22.16 m 0.4 0.03718 2.5

2.16 m 0.4 2.2773 0.83255

2.16 m 0.7584

1.638 mB

− −
=

=

=

=

⎡ ⎤⎣ ⎦

 

 
Now check previous results using the above values for B and C in Equation VI-5-15 
 

 

( )[ ]
( )
( )

[ ]

1/1.738
2%

0.5754
2%

2% 2%

1.638 m ln 0.02

1.638 m 

1.638 m 

3.59 m (11.8 ft) (From Example Problem VI-7-3, 3.53 m (11.6 ft)

3.912

2.192

u

u

u u

R

R

R R

= −

=

=

= =

 

 
and  
 

 

( )[ ]
( )
( )

0.5754

0.5754

1.638 m ln 0.135

1.638 m 

1.638 m 

2.44 m (8.0 ft)

2.002

1.491

us

us

us

R

R

R

= −

=

=

=

 

 
 
now  
 

 2% 3.59 m
1.47

2.44 m
u

us

R
R

= =  

 
which does not give the same ratio as the Rayleigh distribution for wave heights where  
H2% = 1.398 Hs.   
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 EXAMPLE PROBLEM VI-7-4 (Concluded) 

 
At the 1 percent level 
 

 

( )[ ]
( )
( )

0.5754
1%

0.5754

1.638 m ln 0.01

1.638 m 

1.638 m 3.94 m (12.9 ft)

4.605

2.4079

uR = −

=

= =

 

 
For design, wave runup values calculated at the 2 percent exceedance probability level are considered 
a reasonable upper limit “. . . to prevent wave overtopping.”   
 
 (b) Influence of shallow water on wave runup 
 
Assuming the breaker index for shallow-water wave breaking is given by the ratio 
 

 0.78
b

H
d

=⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 
then 
 
 Hb = 0.78 d = 0.78 (3.0) = 2.34 m (7.7 ft) 
 
Therefore, because Hs = 2.16 m < Hb, no breaking occurs.  Therefore, assuming (h = 1.0 is justified.   
 
Note that if the design water depth at the structure toe dropped to 2.8 m (9.2 ft), then breaking begins.  
Equation VI-5-10 can only be applied where H2% and Hs are known from field data or numerical 
model results.   
 
 (c) Influence of wave angle and directional spreading 
 
As seen in Equation VI-5-11, the previous results hold for wave angles, $ less than 10 deg from 
normal incidence of long-crested swell-type, wave spectrums.  Angles of incidence larger than 10 deg 
will reduce the wave runup (($ < 1.0).   
 
DISCUSSION: 
 For other conditions, the statistical distribution of the wave runup has not been analyzed.   
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EXAMPLE PROBLEM VI-7-5 
 
FIND:   
 Determine the wave runup at the 2 percent exceedance probability level for a composite slope 
shown in the following.   
 
GIVEN: 
 A smooth-faced breakwater of composite slope (m) shown with water depth, dtoe = 1.2 m 
(3.9 ft) is subjected to a significant wave height in deep water Ho

N  = 1.5 m (4.9 ft) and Tp = 8 s. The 
offshore slope is 1:20. 
 

 
Figure VI-7-1.  Smooth faced levee 
 
SOLUTION:  
 (1) Wave height, (Hs) toe  
  
 (a) SPM (1984) 
 

 
'

2 2 2
1.5 m 0.0024

9.81 m/s (8 s)
oH

gT
= =  

 
From Figure 7-3 (Shore Protection Manual 1984), at m = 0.05 
 

 ' 1.46  or  1.46 (1.5 m) = 2.19 m (7.19 ft)b
b

o

H H
H

= =  

 
From Figure 7-2, Shore Protection Manual (1984), for m = 0:05 and  
 

( )2 22

2.19 m 0.0035
9.81 m/s 8 s

bH
gT

= =  
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EXAMPLE PROBLEM VI-7-5 (Continued) 
 

 0.93b

b

d
H

=  

 
db = 0.93 (2.19 m) = 2.04 m (6.68 ft)  

 
and occurs about 17 m (56 ft) in front of toe 
 
 (b) ACES (Leenknecht et al. 1992) 
  Goda method not applicable for d < 3.048 m (10 ft) 
 
  Linear theory/Snell’s law - Wave broken, Hb = 2.41 m, db = 2.33 m 
gives 
 

 2.33
0.97

2.41
b

b

d
H

= =  (Checks okay) 

 
(c) Assume wave energy decay continues from db  = 2.1 - 2.3 m to toe of levee,  
 

hence,   ( )toe

1.2
1.29 m (4.2 ft)

0.93 0.93
bd

H = = =  

 
Use        (Hs)toe = 1.29 m at toe of levee  
 
 
 (2) Berm influence factor, (b   
 
 (a) Breaking wave surf similarity parameter based on an equivalent slope, >eq.  (See Figure 
VI-7-1) 
 

equivalent structure slope   1 11.29
tan tan 0.188 10.63  (1:5.3 slope)

3 3(1.29)eqα − −= = = °
+

⎡ ⎤
⎢ ⎥
⎣ ⎦

 

 
average slope    
 

 ( ) ( ) ( )

1

2 22

tan 0.333 18.43

2 2 1.29
0.01291

9.81 m/s (8 s)
s s

op
op p

toe toeH H
s

L gT

α

π π

−= = °

≡ = = =
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 EXAMPLE PROBLEM VI-7-5 (Concluded) 

therefore 
 

 

0.188
1.65

0.01291

0.333
2.93

0.01291

tan

tan

eq

op

eq

op

op

s

s

ξ

ξ

α

α

= =

= =

=

=
 

 
From Equation VI-5-8 
 

 
1.65

0.56
2.93

eq
b

op

ξ
γ

ξ
= = =  

 
Since 0.6 < (b # 1.0, use (b = 0.6 
 
For >eq # 2 from Equation VI-5-7 
 

 ( )
2% 1.5u

op r b h
s

R
H toe βξ γ γ γ γ=  

 
Take, 
 
 γr = 1.0 (smooth) 

 γb = 0.6 berm influence 

 γh = 0.9 (since wave breaking begins 19 m (59 ft) from toe, assume some reduction in γh 

 γβ = 1.0 (θ = 0° 

 
gives 
 

 

( )
( )( )( )( )( )2%

2%

1.5 2.93 1.0 0.6 0.9 1.0

   2.37

2.37 (1.29 m) = 3.06 m (10.0 ft) 

u

s toe

u

R

H

R

=

=

=

 

 
[NOTE:  By composite method, Shore Protection Manual (1984) gave Rus = 1.8 m (5.9 ft).  Assuming 
Rayleigh distribution  
 
Ru2%/Rus  = 1.4 m (4.6 ft) so Ru2% = 2.5 m (8.2 ft)].   
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VI-7-3.  Wave Overtopping  
 
 
 
 

EXAMPLE PROBLEM VI-7-6 
 
FIND: 
 Estimate the average overtopping discharge rate for the given wave, water level, and structure 
geometry.   
 
GIVEN:   
 An impermeable structure with a smooth slope of 1-on-2.5 (tan α = 0.4) is subjected to waves 
having a deepwater, significant height Ho

’ = 1.5 m (4.9 ft) and a period T = 8 s.  Water depth at the 
structure toe is dtoe = 3.0 m (9.8 ft) relative to design still-water level (SWL).  The crest elevation, RL 
is 1.5 m (4.9 ft) above the design, SWL.  Onshore winds of 18 m/s (35 knots) are assumed.   
 
SOLUTION: 
 Table VI-5-7 lists two models applicable for this example, to determine the average 
overtopping discharge rate, q (cu m/s per meter) from two formulas, namely Owen (1980, 1982) and 
van der Meer and Janssen (1995).  Both require knowledge of the wave height, Hs at the toe of the 
structure.   
 
Assume wave direction is shore normal to the structure.   
 
 (1) Wave height, Hs at structure toe 
 
 (a) Linear wave theory 
 

 

( )22

'

29.81 m/s
8 s 99.92 m (327.8 ft)

2
3.0

0.0300
99.92

1.125

2o

o

o

g
L

d
L

H
H

T
π π

= = =

= =

=

 

(Table C-1, Shore Protection Manual 1984)  
 
Assume H = Hs = 1.125(1.5 m) = 1.69 m (5.5 ft) (nonbreaking) 
 
 (b) Irregular wave, Goda method, see ACES (Leenknecht et al. 1992) 
 
  
 Hs = 1.6 m (5.2 ft)                  (Checks okay) 
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EXAMPLE PROBLEM VI-7-6 (Continued) 
 
 (c) Use (Hs)toe = 1.69 m (5.5 ft) (conservative) 
 
 (2) Table VI-5-8, Owen (1980, 1982)  
 
Using Equation VI-5-22 
 

 1
exp

2
c om

s om s r

Rq
a b

gH T H
s
π γ

= −
⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

 

 
requires knowledge of Tom.  As discussed in VI-5-2-a-(3)-(b), the relation between Tm and Tp can be 
estimated from 
 
 JONSWAP spectra,   Tm/Tp = 0.79 - 0.87 

or    in deep water 

 Pierson-Moskowitz spectra Tm/Tp = 0.71 - 0.82 

 
here, take Tm = 0.8 Tp so that Tm = 6.4 sec =  Tom  
 
Therefore, 
 

 2
2

2 63.9 m (210 ft)
2

9.81 m/s (6.4 s)
2om m

g
L T

π π
= = =  

 
and  

 1.69 m
0.02645

63.9 m
s

om
om

H
L

s = = =

 

Now from the coefficients table for smooth slopes shown in Table VI-5-8 
 
 Slope     a         b   
 1:2.0     0.0130  22 
 1:2.5 0.0145  27            7 by linear interpolation 
 1:3.0     0.0160  32 
 
Therefore, with (r = 1.0 (smooth slope) 
 

( )( )( )
( )

( )

2

1.5 m 0.02645 1
0.0145 exp 27

1.69 m 2 1.09.81 m/s 6.4 s

0.0145 exp 1.5549

0.0145 0.21122 0.003063

1.69 m
q

π
= −

= −

= =

⎛ ⎞
⎜ ⎟
⎝ ⎠
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EXAMPLE PROBLEM VI-7-6 (Continued) 
 
or 
 

 
( )( )( )( )
( )( )

2

3 3

9.81 m/s 1.69 m 6.4 s 0.003063

106.10 0.003063

0.325 m /s per meter width (3.5 ft /s per foot width)

q =

=

=

 

 
 (3) Table VI-5-11, van der Meer and Janssen (1995) 
 
The data used to develop Equation VI-5-24 are shown in Figure VI-5-15 (top plot) for >op < 2.  This is 
a comprehensive data set showing the 95 percent confidence bands for the data.   
 
Using Tp = 8 s gives:   
 

 1.69 m
0.01691

99.92 m
s

op
op

H
L

s = = =  

 
so that 
 

 0.4 0.4
ξ 3.08

0.130.01691

tan
op

ops
α

= = ==  

 
Therefore:    
 
 >op > 2 
 
so that Equation VI-5-25 (see bottom plot of Figure VI-5-15) governs.   
 
Using Equation VI-5-25 
 

 
( ) ( )( )( )( )32

1.5 m 1
0.2exp 2.6

1.69 m 1.0 1.0 1.0 1.09.81 m/s 1.69 m
 q

= −
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 
with all the reduction factors as unity.   
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 EXAMPLE PROBLEM VI-7-6 (Concluded) 

 
or 
 

 

( )( ) ( )32

3

3 3

0.2 exp 2.307699.81 m/s 1.69 m

6.88 m

0.137 m  per meter width (1.47 ft /s per foot width)

/s (0.0199)

/s

q

q

q

−= ⋅

=

=

 

 
This result is considerably lower than that found from Table VI-5-8 by Owen (1980, 1982).  
However, a check of this result by examining the data scatter in the lower plot of Figure VI-5-15 
provides some insight.   
 
For a value on the horizontal axis of 
 

 1 1.5 m 1
0.89

1.69 m 1.0
c

s r b h B

R
H γ γ γ γ

= =  

 
the range covered on the vertical axis by the data is about 
 

 
( )
( ) ( )2

3
3

2

2

5
0.0199 2 10  (mean)

1

10

10

q

gH
−

−

−
= ≈
⎧
⎪
⎨
⎪⎩

 

 
Therefore 

 3 3

0.344

0.136  mean, m s  per meter

0.069

3.7

/ 1.46 mean, ft /s per foot
0.74

q = ←

⎧⎧
⎪⎪ ←⎨ ⎨

⎪ ⎪⎩ ⎩

 

 
The range of q at the 95 percent confidence level is about 0.07 to 0.34 m3/s per meter.  The result 
from Table VI-5-8 with q = 0.32 m3/sec per meter (3.44 ft3/sec per foot) now seems reasonable.   
 
This example problem is identical to Example Problem 8 in Chapter 7 of the Shore Protection 
Manual (1984) where the average overtopping rate Q  = 0.3 m3/s per meter (3.23 ft3/s per foot) was 
found.  The Shore Protection Manual result included a factor for wind that is not included.  Because 
of the range of variability in the time-average overtopping discharge rate, the rate of 
 
 q = 0.3 m3/s per meter width 
 
indicates a potential danger for vehicles, pedestrians, and the safety of structures as illustrated in 
Table VI-5-6.  Therefore, raising the crest elevation should be considered. 
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EXAMPLE PROBLEM VI-7-7 
 
FIND: 
 a.  Estimate the overtopping volumes of individual waves, and overtopping distributions for 
the given wave, water level, and structure geometry.   
 
 b.  What effect does the structure permeability have on the results?   
 
GIVEN: 
 The identical conditions of Example Problem VI-7-6 (see sketch) 
 

 
 
Figure VI-7-2.  Overtopping of an impermeable structure 
 
 
SOLUTION: 
 From Example Problem VI-7-6 
 
 q = 0.3 m3/s per meter (3.23 ft3/s per foot) 
is the average overtopping discharge rate for waves with (Hs)toe = 1.69 m (5.54 ft) and Tm = 6.4 s.  
 
Equation VI-5-30 (or VI-5-31) with coefficient B (Equation VI-5-32) depend on Pow, probability of 
overtopping per incoming wave.   
 
 (1) Rayleigh distribution for runup on smooth, impermeable slopes. 
 
Assuming the runup levels follow a Raleigh distribution, Equation VI-5-33 gives for the probability 
of overtopping per incoming wave,  
 

 
2

expow
c

s

R
P

c H
= −

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦
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EXAMPLE PROBLEM VI-7-7 (Continued) 
 
and Equation VI-5-34 gives 
 
 c = 0.81 >eq (r (h ($ 
 
From Example Problem VI-7-6, taking 
 
 >eq = >op = 3.07 (i.e., (b = 1, no berm) 
 
and all other reduction factors of unity, gives 
 
 c = 0.81 (3.07) (1.0) (1.0) (1.0) = 2.49 
 
and 
 

 ( )

2

exp

number of overtopping waves
0.88

number of incoming waves

1.5 m
2.49 1.69 mow

ow

P

P

=

= =

⎡ ⎤⎛ ⎞
⎢ ⎥−⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦  

 
This large percentage is due to the relatively low, crest elevation of the structure.   
 
 (2) Other distributions 
 
As shown in Example Problem VI-7-4, the relation between 
 

 2% 8.55
1.71

5.01
u

us

R
R

= =  

 
for smooth, impermeable slopes is much different than the Rayleigh distribution for wave heights 
where H0.02/Hs = 1.398.  Until further research is conducted, however, it must be assumed that wave 
runup on smooth, impermeable slopes can be approximated by the Rayleigh distribution.   
 
 (a) Overtopping volumes of individual wave, V 
 
From Equation VI-5-32 
 

 
( )( )3

3

0.3 m
0.84 0.84

0.88

1.833 m

6.4 s /s/m

/m

m

ow

B

B

T q
P

=

=

=
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EXAMPLE PROBLEM VI-7-7 (Continued) 
 
as the scale factor for the one-parameter, Weibull distribution given by Equation VI-5-31, so that 
 
 V = (1.833 m3/m) [-ln (p>)]4/3 
 
where p> is the probability of an individual wave overtopping volume (per unit width) exceeding the 
specified overtopping volume, V (per unit width), for some representative probabilities of exceedance 
for individual waves, 
 
 

 
P> V (m3/m) V (ft3/ft)  

 
0.5 1.12 12.1  

 
0.135 4.62 49.7  

 
0.10 5.57 60.0 

 

 
0.05 7.92 85.3  

 
0.02 11.29 121.5  

 
0.01 14.04 151.1  

 
0.001 24.11 259.5  

 
The maximum overtopping volume per unit width, Vmax produced by one wave can be estimated from 
Equation VI-5-35 with B = 1.833 m3/m, i.e.,:  Vmax = 1.833 (ln Now)4/3 which depends on storm 
duration, t.   
 
Assuming Tm = 6.4 s over the storm duration, t, and Pow = 0.88 
 
 t 

hr Nw Now 
Vmax 

m3/m                       ft3/ft Remarks 
 

1 563 495 20.9 225  
 

2 1125 990 24.7 266 Similar to P> = 0.001 
 

5 2813 2475 28.4 306  
 

10 5630 4954 31.8 342  
 

15 8438 7425 33.8 364  
 

20 11250 9900 35.3 380  
 

24 13500 11880 36.3 391 Gives P> = 0.0001 
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 EXAMPLE PROBLEM VI-7-7 (Concluded) 

 
 
Storm surge hydrographs with varying design water levels and accompanying wave condition 
variability during the storm will modify these results, considerably.   
 
 (b) Effect of structure permeability 
 
No data exist for permeable, straight and bermed slopes as summarized in Table VI-5-7, to estimate 
average wave overtopping discharge rates.  However, as shown in Example VI-7-2 for a rough, 
impermeable slope 
 
 Ru2% = 4.70 m (15.4 ft) (Equation VI-5-3) ( = 0.55 
 
  = 3.56 m (11.7 ft) (Equation VI-5-6) ( = 0.55 
 
  = 3.53 m (11.6 ft) (Equation VI-5-12) (Table VI-5-5) P = 0.1 
 
using various models.  And, as shown in Example VI-7-3 for rock-armored, permeable-slopes 
(P = 0.5).   
 
 Ru2% = 3.53 m (11.6 ft) (Equation VI-5-3) (Table VI-5-5) 
 
The runup elevation at the 2% exceedance level for this example is about the same for permeable and 
impermeable slopes.   
 
Statistical distribution for wave runup on rock-armored, permeable slopes are discussed in Part VI-5-
2-b.(4)(b) and best-fit, by a two-parameter Weibull distribution (Equation VI-5-14).  Structure 
permeability absorbs the higher frequency runup components to modify the distribution from that 
given by the Rayleigh distribution.   
 
Research is needed for the probability distribution of wave overtopping per incoming waves on 
permeable slopes.   
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VI-7-4.  Armor Layer Stability 
 
 
 
 

EXAMPLE PROBLEM VI-7-8 
 
FIND: 
 The weight of uniform-sized armor stone placed on an impermeable revetment slope with 
nonovertopping waves. 
 
GIVEN: 
 An impermeable structure (revetment) on a freshwater shore has a slope of 1 on 2.5 and is 
subjected to a design, significant wave height, Hs = 2.0 m (6.6 ft) measured at a gauge located in a 
depth, d = 4.5 m (14.8 ft).  Design wave peak period, Tp = 8 s.  Design depth at structure toe at high 
water is dtoe = 3.0 m (9.8 ft). 
 
SOLUTION: 
 From Example Problem VI-7-1, linear wave theory gives the wave height due to shoaling at 
the structure toe as:   
 
 (Hs)toe = 2.16 m (7.0 ft) 

 
 
ASSUMPTIONS: (See Tables VI-5-22 and VI-5-23) 
 
 1.  Fresh water, Dw = 1,000 kg/m3 
 2.  Rock , Ds = 2,650 kg/m3 
 3.  Two layers, n = 2, random placement 
 4.  Quarry stone, rough angular 
 5.  No damage criteria (see Table VI-5-21 for damage values, D and S) 
 
Item 1.  Hudson (1974), Shore Protection Manual (1984) 
 
 Use H = H0.1 = 1.27 Hs for the Rayleigh distributed wave heights and related KD -values for 
stability coefficient.  These recommendations of Shore Protection Manual (1984) introduce a factor 
of safety compared to that recommended in the Shore Protection Manual (1977).  The no-damage 
range is D = 0-5 percent.   
 
From Equation VI-5-67, rearranged for the median rock mass 
 

 
( )

3

50 3/ 1 cot
s

D s w

H
M

K

ρ

ρ ρ α
=

−
 

 
Noting 
 
 W50 = M50g 
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EXAMPLE PROBLEM VI-7-8 (Continued) 
 
this equation becomes 

 
( )

3

50 3/ 1 cot
s

D s w

gH
W

K

ρ

ρ ρ α
=

−
 

 
By definition 
 
 (s = Ds g = unit weight of rock 
 
and 
 
 Ds/Dw = s, the specific gravity for rock 
 
so 
 

 
( )

3

50 31 cot
s

D

H
W

K s

γ

α
=

−
 

 
which is the more familiar form of the Hudson formula.  KD is the Hudson stability coefficient.   
 

 At the toe, 2.16 m
0.7

3.0 m
sH

d
= = , and the wave condition is close to breaking for shallow water.  

 
 If Hs is assumed to be equivalent to the energy-based significant wave height, Hmo, then the 
maximum depth-limited Hmo . 0.6 d.  Therefore, the maximum breaking wave at the structure toe 
would be the maximum monochromatic breaking wave.   
 
 If Hs is taken equal to H1/3, then Hs > Hmo near the point where a significant portion of waves 
in the distribution are breaking.  In this case, calculate H0.1 to see if it is greater than the maximum 
breaking wave at the structure toe, then use the lesser of the two.   
 
 In summary, determination of wave breaking depends on which definition of significant wave 
height (Hmo or H1/3) is used to transform the waves to the toe of the structure.   
 
 For this example, assume Hs = Hmo.  Therefore, linear shoaling has given an unrealistically 
large estimate of Hs.  So assume Hs = 0.6 d = 0.6 (3.0 m) = 1.8 m (5.9 ft).   
 
 The maximum breaking wave height at this depth (assuming a horizontal approach slope) is 
 
 Hb = 0.78 d = 0.78 (3.0 m) = 2.34 m (7.7 ft) 
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EXAMPLE PROBLEM VI-7-8 (Continued) 
 
 For breaking waves on randomly-placed, rough angular stone, use KD = 2.0 in Hudson’s 
equation 
 

 ( )( )( )
( ) ( )

33 2

50 3

2,650 / 9.81 / 2.34

2.0 2.65 1 2.5

kg m m s m
W =

−
 = 14,830 N (3,334 lb) 

 
The equivalent cube length is given by 
 

 
( )( ) ( )

1/3 2
50

50 3 2

14,830 kg - m/s 0.83 m 2.7 ft)
2,650 kg/m 9.81 m/s

n
s

WD
gρ

⎡ ⎤⎛ ⎞ ⎢ ⎥= = =⎜ ⎟ ⎢ ⎥⎝ ⎠ ⎣ ⎦
 

 
Item 2.  Van der Meer (1988), Table VI-5-23 
 
Additional assumptions and data input are required.  See Table VI-5-23.   
 
(a) Notational permeability coefficient, P.  
 
As shown on Figure VI-5-11 for impermeable, rock revetments,  
 
 P = 0.1 
 
(b) Number of waves, Nz 
 
This value depends on the length of the storm and average wave period during the storm.  For 
example, a 13-14 hr storm with average wave period, Tm = 6.6 s would produce about 7,500 waves.  
When Nz > 7,500, the equilibrium damage criteria is obtained.   
 
 Let  Nz = 7,500 
 
 (c) Relative eroded (damage) area, S.  This variable is defined by Equation VI-5-60. 
 

2
50

e

n

A
S

D
≡  

 
where Ae is the eroded cross-section area around the SWL.  Thus, S is a dimensionless damage 
parameter, independent of slope length.  Table VI-5-21 presents damage levels (initial, intermediate, 
failure) for a two-layer armor layer (n=2).  For a slope 1:2.5 (interpolate between 1:2 and 1:3). 
 
 Initial damage, S = 2  
 Intermediate damage, S = 5.0-7.5  
 Failure, S $ 10  
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EXAMPLE PROBLEM VI-7-8 (Continued) 
 
Hence, for initial or no damage condition, use 
 
 S = 2 (nominal value) 
 
For irregular waves striking the revetment at 90 deg (normal), the applicable formulas of van der 
Meer (1988) are found in Table VI-5-23.  Two cases exist depending on whether the waves are (1) 
plunging or (2) surging against the revetment slope.   
 
 (1) Plunging waves:  >m < >mc (Equation VI-5-58) 
 
Recall Example VI-7-1 where the surf-similarity parameter, >m was defined and discussed.  Here, it is 
determined for a mean wave period, Tm using the wave height at the toe, Htoe.  Therefore, using Hs = 
1.8 m and Tm = 6.6 s, 
 

 
( )

( )
( )22 2

1.8 m 2
0.02647

9.81 m/s 6.6 s
2

toe
om

m

H
g

T
s

π

π

= = =  

 
Here, it is assumed that Tm = 0.82 Tp, which is an average relation and slightly different than that 
employed for Example Problem VI-7-1.   
 
Now it is found that 
 

 tan 1/ 2.5
2.46

0.02647
m

oms
α

ξ = = =  

 
As discussed in Table VI-5-23, if >m < >mc where 
 

( )
( )1/ 0.50.50.316.2 tan

P

mc Pξ α
+

≡ ⎡ ⎤
⎣ ⎦  

 
then, the plunging waves Equation VI-5-68 is applicable.  Hence, 
 

( ) ( )
1/ 0.60.31 0.56.2 0.1 0.4mcξ = ⎡ ⎤

⎣ ⎦  

 
gives 
 
 >mc = 2.97 
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EXAMPLE PROBLEM VI-7-8 (Continued) 
 
Therefore, >m < >mc so that the plunging wave conditions apply.  It is convenient to apply the stability 
paramater, Nz form (see Equation VI-5-58) to give 
 

 0.2 0.18 0.1 0.56.2s
z m

n

H
S P N

D
ξ− −=

Δ
 

 
from Table VI-5-23.  Or, 
 

 0.2 0.18 0.1 0.56.2(2) (0.1) (7500) (2.46) 1.23s

n

H
D

− −=
Δ

=  

 
which gives for H = Hs = 1.8 m, ) = (s - 1) = 1.65 
 
 

( )50
1.8 m 0.89 m (2.9 ft)

1.23 1.23 1.65
s

n
HD = = =

Δ
 

 
and 
 
 W50 = ρsg (Dn50)3 = (2,650 kg/m3) (9.81 m/s2) (0.89 m)3 = 18,327 N (4,120 lb) 
 
The stability number is Ns = 1.23.  Statically stable breakwaters have this stability parameter in the 
range 1-4 for Ho To < 100 (van der Meer 1990).   
 
DISCUSSION: 
 In summary, for the breaking wave, storm, and damage conditions, i.e.,  
 
 Hs = 1.8 m 
 Hb = 2.34 m 
 Tp = 8 s 
 S = 2  
 Nz = 7,500 (13-14 hr storm) 
 
 Hudson (1974) W50 = 14,830 N (3,334 lb) breaking wave 
 van der Meer (1988) W50 = 18,327 N (4,120 lb) plunging wave 
 
and it can be said that both methods gives simular results.   
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 EXAMPLE PROBLEM VI-7-8 (Concluded) 

 
The Hudson (1974) formula and therefore, the Shore Protection Manual (1984) method limitations 
include:   
 
 no wave period effects 
 no storm duration effects 
 damage level limited to range 0-5% 
 
and others as discussed in subsequent examples.  The wave period effects have long been discussed as 
an important missing element in the Hudson (1974) formulation.  For example, as shown in Example 
VI-7-1, as T increases, the surf similarity parameter increases.  If the period in the preceding example 
was increased, the following results would be obtained from the van der Meer (1988) formulation for 
plunging waves (Table VI-5-23).   
 
 

Period, s 
Tp            Tm W50, N Remarks 

9.0 7.38 21,478 Plunging Waves formula okay 

10.0 8.2 23,865 Use Surging Wave formula, Equation VI-5-69 

11.0 9.02 23,194 Use Surging Wave formula, Equation VI-5-69 
 
 
Example VI-7-9 demonstrates the practical importance of wave period on armor layer stability.   
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EXAMPLE PROBLEM VI-7-9 
 
FIND:   
 1.  The design wave height for a stable, uniform-sized armor stone placed on an impermeable 
revetment slope with non-overtopping waves.   
 
 2.  Study the evolution in armor stability design since the 1960's including such factors as 
alteration in coefficients, wave period, and partial safety factors for design.   
 
GIVEN: 
 In the early 1960's, the Chesapeake Bay Bridge Tunnel (CBBT) islands were constructed with 
10 ton (U.S. units) armor stones on a 1:2 slope (single layer) as a revetment for storm protection.  The 
CBBT revetments have been relatively stable and survived many northeasters and hurricanes. 
 
On 31 October 1991, the famous Halloween storm caused severe damage to the revetment. (This 
storm has been the subject of a best selling novel “The Perfect Storm,” Junger (1997) and a 
Hollywood movie “The Storm of the Century”). Hydrographic surveys determined the extent of 
damage as discussed in Example Problem VI-7-10. 
 
Wave conditions measured at the U.S. Army Engineers Field Research Facility (FRF) located 65 
miles south in 8 m (26.2 ft) water depth were Hs = 4.6 m (15.1 ft), Tp = 22 sec.  At the Virginia Beach 
wave gauge VA001 also located in 8 m depth, Hs = 2.6 m (8.53 ft) and Tp about 23 sec under peak 
conditions.  These waves came from 90 deg (True North) direction and lasted about 12 hours.  The 
measured storm surge at Hampton Roads tide gauge (Sewells Pt.) was 0.85 m (2.8 ft).   
 
ASSUMPTIONS: (See Tables VI-5-22 and VI-5-23) 
 1.  Sea water, Dw = 1,030 kg/m3. 
 2.  Rock, Ds = 2,650 kg/m3. 
 3.  One layer, n = 1, rough angular, random placement. 
 4.  No-damage criteria (see Table VI-5-21 for D and S damage values).   
 
SOLUTION:   
 Item 1.  Hudson (1974), SPM (1977) 
 
Estimate the stable design wave height H = Hs.  From Equation VI-5-67.   
 

 ( )1/ 3

50

cotD
n

H
K

D
α=

Δ
 

 
Knowing W50 = (Dsg)(Dn50)3 = 10 tons = 20,000 lbs (89,000 N), and   
 
 Dsg = (s = (5.14 slugs/ft3) (32.2 ft/s2) = 165.6 lb/ft3 (26,000 N/m3) 
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EXAMPLE PROBLEM VI-7-9 (Continued) 
 
The equivalent cube length is given as:    
 

 ( )
1/ 3

50 3
20,000 lbs

4.94 ft 1.51 m
165.6 lb/ft

 nD = =⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 
Now, considering only wave breaking events on the revetment, as seen in Table VI-5-22, KD values 
employed in 1977 were KD = 3.5 for randomly-placed, rough, angular stone.  Rearranging Equation 
VI-5-67   
 

 

( ) ( )( )

( )( )( )

1/ 31/3
50 1 4.94 m 3.5 2.0

1.57 4.94 m 1.913

14.8 ft (4.5 m)

cot s
b

w

b

b

n DH D

H

H

K ρ
ρ

α= Δ −

=

=

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

 

 
If the stones were smooth and rounded, KD = 2.1 giving Hb = 12.5 ft (3.8 m).  These 10-ton stones 
would be less stable.   
 
Item 2.  Hudson (1974), SPM (1984)  
 
The SPM (1984) took H1/10 = 1.27 Hs from the Rayleigh Distribution for a non-breaking conditions 
and reduced the Hudson coefficients as a result of additional testing using irregular waves.  For 
breaking wave conditions, use Hb as the wave height. 
 

 
( )

( )( )

1/ 3
50

1/ 3

cot

1.57 4.94 2.0 2.0

12.3 ft (3.76 m)

b n D

b

b

H D K

H

H

α= Δ

=

=

 

 
so that Hb = 12.3 ft (3.76 m) for the stable conditions 
 
Note also that for smooth stones (KD = 1.2) gives Hb = 10.4 ft (3.17 m).   
 
These results should be interpreted to demonstrate that for a given armor stone weight the design 
wave height for the stable, no-damage condition has decreased by about 22 percent using the SPM 
(1984) for breaking waves.  Assuming the breaking wave height is approximately equal to H1/10, the 
corresponding significant wave height is    
 
 Hs = Hb / 1.27 = 12.3 ft/1.27 = 9.7 ft (2.96 m) 
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EXAMPLE PROBLEM VI-7-9 (Continued) 
 
Wave heights measured at Duck, NC (Hs = 4.6 m) and at Virginia Beach, VA, during the storm event 
exceeded the design wave height, so it reasonable to assume waves at the CBBT site also exceed the 
design wave height.   
 
The Halloween Storm event was unique to the Atlantic Ocean, East Coast for the very long period 
swell waves (Tp > 20 sec) generated and recorded.  Wave period is not a variable in the Hudson 
formula.   
 
Item 3.  van der Meer (1988), Table VI-5-23 
 
Now consider for irregular, head-on waves on rock, non-overtopping slopes, the formulas of van der 
Meer (1988) as shown in Table VI-5-23. 
 
Assume as additional, needed variables 
 
 P = 0.1 for impermeable, rock revetments 
 

 
12 hrs (3,600 s/hr)

2,360 waves
18.3 secz

m

t
N

T
= = =  

 
 S = 2 (nominal value) for the initial, no-damage condition 
 
 Tp = 22.0 sec (Tm = 18.3 sec) 
 
 (a) Determine which stability equation is applicable.   
 
Because of the very long wave period, Tp = 22 sec giving Tm . 18.3 sec, the surf-similarity parameter, 
>m given by 
 

 
tan

m
mS

α
ξ =  

 
with 
 

 
( )2

2π

= toe
m

m

H
g

T
s  

 
gives a relatively large value of >m.  For example, taking Hs = 5.75 ft (1.75 m) gives >m = 8.63.   
 
But the critical >mc is found from Table VI-5-23.   
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EXAMPLE PROBLEM VI-7-9 (Continued) 
 

 ( )( ) ( )1/( 0.5)0.50.31 1/ 0.60.31 0.56.2 tan

3.57

6.2 (0.1)  (0.5)
P

mc

mc

Pξ α

ξ

+
=

=

=
 

 
Therefore, since >m > >mc, Table VI-5-23 requires that the Surging Waves, Equation VI-5-69 be 
employed.  
 
 (b) Use Surging Waves, Equation VI-5-69 (>m > >mc) 
 
The stability parameter, Ns form in Table VI-5-23 is 
 

 ( )0.50.2 0.13 0.1

50

1.0 cot Ps
z m

n

H
S P N

D
α ξ− −=

Δ
 

 
giving 
 

( ) ( ) ( ) ( ) ( ) ( )0.10.2 0.13 0.1 0.5 0.11.0 2 0.1 2360 2.0 1.008m mξ ξ− −= =  
 
 Substituting Dn50 = 4.94 ft (1.51 m) and ) = 1.57 and expanding >m yields 
 

 
0.1tan

2
21.57 (4.94 ft)(1.008) s

s
m

HH
g T

α

π
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 

 

 
( )

0.10.5 0.05

22

2 17.82
32.2 ft/s 18.3 s

s
s

H
H

π
⎡ ⎤

⎡ ⎤⎢ ⎥= ⎢ ⎥⎢ ⎥ ⎣ ⎦⎢ ⎥⎣ ⎦

 

 
Hs

1.05 = 10.58 
 
 Hs = (10.58)1/1.05 = 9.5 ft (2.9 m) 
 
which is comparable to the value estimated by the Hudson equation.   
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EXAMPLE PROBLEM VI-7-9 (Continued) 
 
The stability number, Ns = 1.22, i.e., Ns > 1 for stable conditions.   
 
Now for this same wave height, Hs = 9.5 ft (2.90 m), what armor layer weight, W50 is required for 
shorter wave periods, Tp to remain stable? 
 

 Wave period (sec) 
Tp                       TM 

  Weight W50 
lbs          (kN) Remarks  

 
20.0 16.7 20,770    (92.4) OK - Surging Equation VI-5-69  

 
15.0 12.5 22,640    (100.7) OK - Surging Equation VI-5-69  

 
12.0 10.0 24,206    (107.7) OK - Surging Equation VI-5-69  

 
10.0 8.3 19,140    (85.1) Use Plunging Equation VI-5-68  

 
Now we see that for surging waves, lowering the wave period increases the stone weight, W50, for 
stability up to some point where the conditions for the Surging Wave Equation are no longer 
applicable.  This is the opposite trend as shown in Example VI-7-8 for the case where the Plunging 
Wave Equation was applicable.  In general, each equation is only applicable for the special 
conditions.   
 
 >m < >mc Use Plunging Waves, Equation VI-5-68 
 
 
 >m > >mc Use Surging Waves, Equation VI-5-69 
 
and the wave period, Tp is an important variable in the equation for >m.   
 
All the above does not address the need for some safety factors in applying the van der Meer formulas 
for design.   
 
Item 4.  Partial Safety Factors (VI-6-6) 
 
The theory behind the inclusion of partial safety factors for the stable design of armor stone is found 
in VI-6-6.  In general, the safety factors increase:   
 
 1.  as our knowledge of the wave height conditions decreases, and 
 2.  as our desire for a risk free, low failure probability increases.   
 
Table VI-6-6 presents the Partial Safety Factors ranging up to 1.9 for Surging Wave conditions on 
non-overtopping slopes using the van der Meer, 1988 Equation VI-6-45.   
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EXAMPLE PROBLEM VI-7-9 (Continued) 
 
Here, we consider the influence of the partial safety factors on the wave heights for a stable armor 
stone weight, 10 tons on a 1:2 slope for this example.  In all cases, also take P = 0.1, S = 2, and Nz = 
2360 waves for Tp = 22.0 sec.  Consider two cases:    
   
 (a) Excellent Knowledge of Wave Conditions (F = 0.05) at site.   
 

 Failure  
Probability Pf (H (z 

Hs 
ft (m) 

  

 
Low 0.01 1.7 1.00 5.73 (1.75) 

  

 
Medium 0.10 1.3 1.02 7.25 (2.21) 

  

 
High 0.40 1.0 1.08 8.85 (2.70) 

  

 
No. S.F. ? 1.0 1.0 9.5 (2.90) 

  

 

 
Decreasing the degree of risk of failure (i.e., including safety factors) means lowering the wave height 
design conditions for the same armor stone weight and revetment slope.   
 
 (b) Relatively Poor Knowledge of Wave Conditions (F = 0.2) at site 
 

 Failure  
Probability Pf (H (z 

Hs 
ft (m) 

  

 
Low 0.01 1.9 1.02 5.05 (1.54) 

  

 
Medium 0.10 1.4 1.04 6.65 (2.03) 

  

 
High 0.40 1.1 1.00 8.70 (2.65) 

  

 
To ensure a low failure probability means using 10-ton armor stone on a 1:2 slope in regions with 
long period waves but wave heights only in the 5-6 ft range.   
 
Clearly, since these armor stones were severly damaged in the 31 October 1991 storm, the storm 
wave heights must have been greater than all those calculated above.   
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EXAMPLE PROBLEM VI-7-9 (Concluded) 
 
5.  SUMMARY: 
 Given:   
 

 

50

50

10 tons = 20,000 lbs (89,000 N)

D 4.94 ft (1.51 m)

P = 0.1

S = 2

2,360

22 sec ( 18.3 sec)

n

z

p m

W

N

T T

=

=

=

= =

 

 
 

 
 

Stable, Significant Wave 
Height, Hs Remarks 

 

 Armor-Layer 
Stability Formula feet meters  

 

 Hudson (1974) 
SPM (1977) 

14.9 4.5 No period effects, breaking waves 
No safety factor 

 

 Hudson (1974) 
SPM (1984) 

9.7 2.32 No period effects, breaking waves 
Revised coefficients, conservative 

 

 van der Meer (1988) 
(no safety factor) 

9.5 2.90 Tp = 22.0 sec, surging waves 
No safety factor 

 

 van der Meer (1988) 
(with safety factor) 

5-9 1.5-2.7 Tp = 22.0 sec, surging waves 
Includes partial safety factors,  
Part VI, Chapter 6 

 

 
 
With such long wave periods, it is possible that waves did not break on the revetment, and Hudson’s 
equation could be applied with nonbreaking wave KDs.   
 
Clearly a wide range of wave heights are possible based on these formulas.  Example VI-7-10 
considers the damage experience by the CBBT island revetments to determine the design wave 
conditions.  Example VI-7-11 considers the size (weight) of the armor stones for repair.   
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EXAMPLE PROBLEM VI-7-10 
 
FIND:   
 The damage curve relationship for wave energy above the design wave height for uniform-
sized armor stone placed on an impermeable revetment slope with nonovertopping waves.   
 
GIVEN: 
 The same condition as found in Example VI-7-9 for the Cheasapeake Bay Bridge Tunnel 
(CBBT) island revetments with 1:2 sloped revetment, Tp = 22.0 s, but uncertain knowledge of the 
wave height, Hs. 
 
SOLUTION: 
 Method 1.  Based on van der Meer (1988) 
 
Table 7-9 (in the Shore Protection Manual (1984), (Volume II, p. 7-211) presented the following 
generic, H/Hd - vs - damage D in percent relationships for rough/quarrystone revetments.  (Two 
layers, random placed, nonbreaking waves, minor overtopping.)  This table was not well supported by 
data, so it was not included in the Coastal Engineering Manual.  The value of H depends on what 
level HD=0 is used for a stable design.   
 
 

 
H/HD=0 

Damage. D 
Percent 

 

 
1.0 0-5 

 

 
1.08 5-10 

 

 
1.19 10-15 

 

 
1.27 15-20 

 

 
1.37 20-30 

 

 
1.47 30-40 

 

 
1.56 40-50 
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EXAMPLE PROBLEM VI-7-10 (Continued) 
 
Now apply van der Meer’s (1988) Equation VI-5-69 for surging waves with Hs(S=2) = 9.5 ft 
(2.90 m), and vary the significant wave height, Hs to calculate S, the damage level.  We keep Dn50 = 
4.95 ft (1.51 m) and W50 = 10 tons (20,000 lb).  This assumes adequate depth exists at the structure 
toe to support the increased significant wave heights without depth-limited breaking.   
 

             Hs 
feet            (m) H/Hs(S=2) S 

Relative 
Damage 
Level Remarks 

 

 
9.5          (2.90) 1.00 2.018 1.009 

Slight rounding error,  
S = 2  

 
10.0        (3.05) 1.05 2.643 1.32   

 
11.0        (3.35) 1.16 4.36 2.18 

    
Intermediate damage level 
S = 4 - 6 

 

 
11.5        (3.51) 1.21 5.51 2.76   

 
12.0        (3.66) 1.26 6.89 3.45   

 
12.5        (3.81) 1.32 8.54 4.27   

 

13.0        (3.96) 1.37 10.5 5.25 

Failure, S = 8 m, armor 
Layer damaged, 
underlayer exposed to 
direct wave attack 

 

 
14.0        (4.27) 1.47 15.5 7.75   

 
15.0        (4.57) 1.58 22.2 11.1   

 
16.0        (4.88) 1.68 31.2 15.6   

 

 
From Table VI-5-21, van der Meer (1988) gives the following guidelines for 1:2 slopes.   
 

 Initial damage S = 2 Initial damage - no displacement  

 Intermediate 
damage 

S = 4 - 6 Units displaced but without 
underlayer exposure  

 Failure (of 
armor layer 

S = 8 The underlayer is exposed to 
direct wave attack  

 

 
Values of H/Hs (S = 2) - vs - S are plotted in Figure VI-7-3.  Also, approximate percentage damage, D 
scales from Shore Protection Manual (1984) are constructed for comparison.   
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EXAMPLE PROBLEM VI-7-10 (Concluded) 
 

 
 
Figure VI-7-3.  Percent damage curve for CBBT South Island revetment 
 
Method 2.  Damage measurements on CBBT Islands 
 
Damage profile surveys taken by the engineering staff, CBBT District have been analyzed to learn 
that S = 10 from the 31 October 1991 Halloween Storm northeaster.  Some underlayers were exposed 
and this level of the damage parameter is consistent with the criteria for “failure” as shown in Table 
VI-5-21.   
 
This damage occurred on South Island on a curved section where the armor stones are more 
vulnerable, i.e., on the head of the structure rather than within the trunk section.  Table VI-5-37 
presents a method to estimate stability of rock breakwaters as proposed by Carver and Heimbaugh 
(1989).   
 
From the analysis for S = 10, the ratio H/Hs(S = 2) = 1.35 giving a significant wave height of  
 
 Hs = 1.35 (9.5 ft) = 12.8 ft (3.9 m) 
 
necessary to produce this level of damage using the van der Meer (1988) formulation for surging 
waves.  As shown in Example Problem VI-7-9, wave heights were measured at Duck, North Carolina, 
as 15.1 ft (4.6 m).   These wave conditions are possible at the Chesapeake Bay entrance with 
relatively deep (d = 12 m (39.4 ft)) water. 
 
Example VI-7-11 considers what value of Hs should be used to determine the size and weight of 
armor stone for repairs of the CBBT island.   
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EXAMPLE PROBLEM VI-7-11 
 
FIND: 
 The weight of armor stone to repair the damage to the CBBT Island revetment.   
 
GIVEN: 
 The results of Example Problems VI-7-9 and VI-7-10 
 Wave Information Study (WIS) hindcast information for nearby locations 
 Other extreme wave condition measurements/criteria 
 Appropriate partial safety factors for wave conditions 
 
Method 1.  WIS Station 2059 (Brooks and Brandon 1995) 
 
 

 
d = 14 m (46.0 ft) Lat. 37.00°N  -  Long. 75.75°W  

  
Extreme Prob. Dist. 
Fisher-Tippett Spectral Significant Wave Height, Hmo (m) 

 

  
Recurrence Interval, Tr, years  

  
2 5 10 20 25 50  

 
Type I 5.87 6.67 7.22 7.76 7.93 8.46  

 
Type II 5.87 6.98 7.90 8.90 9.25 10.41  

 
Method 2.  Virginia Beach Hurricane Protection Project (U.S. Army Corps of Engineers) 
 
 1% chance storm each year (100-year recurrence interval) 
 

 d = 30 ft (9.1 m) 
 Hs = 15.8 ft (4.8m) 
 Tp = 13.7 sec 
 
Storm surge elevation = 8.7 ft (2.65 m) above NGVD (1929) 
 
SOLUTION:   
 As shown in Example Problem VI-7-10, when Hs = 12.8 ft (3.90 m), the damage level 
parameter, S, in the van der Meer (1988) for surging waves was about 10 and this was also the 
average damage level measured by survey.  For redesign, consider the following four cases:   
 
 a.  Wave height, Hs = 13.0 ft (3.96 m) 
      Wave period, Tp = 22.0 s 
 
 b.  Consider what effect different wave periods will have on the armor stone size, keeping Hs 
= 13.0 ft.   
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EXAMPLE PROBLEM VI-7-11 (Continued) 
 
 c.  Consider what effect storm duration up to Nmax = 7,500 waves will have on the stone  
 size for  Hs = 13.0 ft (3.96 m) and the critical periods.   
 
 d.  Consider what effect some increase in allowable damage level, S, has on these results.   
 
Case a.  From Equation VI-6-45 in Table VI-6-6, for Hs = 13.0 ft and Tp = 22.0 s (Tm = 18.3 s). 
 
 W50 = 54, 236 lb (241,250 N) 
  Dn50 = 6.9 ft (2.10 m) 
 
with no safety factor, i.e., (H = (Z = 1.0 
 
Assuming our knowledge of wave conditions is fairly good (Fw = 0.05) and using a failure probability 
(Pf) of 0.10 gives (H  = 1.3 and (z = 1.02.  Using these partial safety factors in Equation VI-6-45 gives 
 
 W50 = 126,490 lb (562,650 N) 
 Dn50 = 9.1 ft (2.77 m) 
 
This is not a practical size in the quarry and for construction. 
 
Case b.  From Equation VI-6-45 for Hs = 13.0 ft and other wave periods, Tp with no partial safety 
factors. 
 

 
Armor Layer 

 Mean Wave 
Period, Tm s 

Peak 
Wave 
Period , 
Tp s 

Stone wt, 
W50, lb 

Stone diam,  
Dn, ft          (m) 

van der Meer 
Formula 
S = Surging 
P = Plunging 

Nz = 2,360 
Storm 
Duration 
t, hr Remarks 

 18.3 22 54,340 6.90        (2.10) S 12.0 The Hudson 
formula does not 
consider wave 
period 

 16.7 20 55,852 6.96          (2.12) S 10.4   

 14.9 18 57,796 7.04          (2.15) S 9.8   

 13.3 16 59,799 7.12          (2.17) S 8.7   

 11.6 14 62,304 7.22          (2.20) S 7.6   

 10.0 12 51,585 6.78          (2.07) P 6.6   

 8.3 10 39,007 6.18          (1.88) P 5.4  

 
(Sheet 2 of 4) 



EM 1110-2-1110 (Part VI) 
1 Jun 06 

VI-7-46 Example Problems 

 
 
 
 

EXAMPLE PROBLEM VI-7-11 (Continued) 
 
Lowering the wave period with Hs = 13.0 ft (3.96 m) slightly increases the armor stone weight by 15 
percent for Tp from 22 - 14 s.  The surging equations govern.   
 
Case c.  As noted in Table VI-5-23 for Nz = 7,500 waves, the equilibrium damage level is 
approximately reached.   
  

 
Armor Stone Weight, W50 lbs 

 Wave Period, 
Tp s 

Nz = 2,360 
(t = hr) 

Nz = 3,500 
(t = hr) 

Nz = 5,000 
(t = hr) 

Nz = 7,500 
(t = hr) Remarks 

 22 54.340 
(12.0) 

61,159 
(17.8) 

68,066 
(25.4) 

76,871 
(38.1) 

The very long durations 
are not physically realistic.  
Long durations at long 
periods also not realistic 

 18 57,796 
(9.8) 

65,049 
(14.5) 

72,396 
(20.7) 

81,760 
(31.0)   

 14 62.304 
(7.6) 

70,123 
(11.3) 

78,042 
(16.1) 

88,137 
(24.2)  

 
Again, as expected, increasing the storm duration increases the weight of the armor stone required for 
stable weight at the S = 2 level.  Note however, that some storm durations (t > 18 hr) are physically 
unrealistic for sustained, long period waves and wave heights, Hs = 13.0 ft (3.96 m). 
 
Case d.  Consider realistic wave periods, Tp = 14-22 s for storms lasting 8 to 18 hr with Hs = 13.0 ft 
(3.96 m).  Now vary the damage level allowable to the intermediate range, S = 4 - 6 (say S = 5) for 
rock on slopes with cot " = 2:   
 

 
Armor Stone Weight, W50 lb  

 Nz = 2,360 Nz = 3,500  

 
Damage 
Parameter 
S 

Tp = 22 s Tp = 18 s Tp = 14 s Tp = 22 s Tp = 18 s Tp = 14 s  

 2 54,340 57,796 62,304 61,159 65,049 70,123  

 3 42,605 45,315 48,849 47,952 51,002 54,980  

 4 35,851 38,131 41,105 40,350 42,916 46,264  

 5 31,358 33,353 35,954 35,294 37,539 40,467  

 6 28,109 29,897 32,229 31,637 33,649 36,273  

 7 25,626 27,256 29,381 28,842 30,676 33,069  
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EXAMPLE PROBLEM VI-7-11 (Concluded) 
 
Allowing the damage level to rise up to S = 6 in effect means using roughly one-half the weight of 
armor stone needed when S = 2.  This is a tremendous reduction and cost savings for initial 
construction costs and repair costs in a balanced design.   
 
(Note that using the Hudson (1977) formula and Shore Protection Manual (1984) methodology H1/10 
= 1.27 Hs, KD = 2.0, gives W50 = 48,036 lb.  This is roughly equivalent to that previously obtained for 
Tp = 14 s, S = 3 with an 11+ hr storm event.) 
 
The CBBT island revetment was repaired in August 1994.  The W50 was 13.5 tons (27,000 lb) with 
allowable range 12-15 tons.  No stones W50 < 12 tons were allowed.  As already demonstrated, this 
repair stone weight, W50 = 13.5 tons (35 percent increase in weight) is on the order required but with 
some damage expected in the future.  All of the preceding is with no partial safety factors in the 
design.   
 
Alternatives for repair would be to use artifically manufactured concrete cubes (Table VI-5-29), 
tetrapods (Table VI-5-30) or the Corps of Engineers’ new Core-Loc® design (Table VI-5-34).  These 
units have greater interlocking abilities and are stable with less weight.  A detailed cost analysis is 
necessary to justify the additional repair expense.   
 
SUMMARY:   
 Item 1.  All of the preceding was calculated keeping Hs = 13.0 ft (3.96 m) for design.   Wave 
period, storm duration, and allowable damage level are all additional, important factors, but are not 
considered in the Hudson formula (1977) nor in the Shore Protection Manual (1984). 
 
 Item 2.  As shown in Table VI-6-6 for Equation VI-6-45 surging waves and van der Meer 
(1988) formulation, not including any partial safety factors (i.e., taking (H = (F = 1.0) implies:   
 
 a.  Our knowledge of wave height conditions is good (Fw = 0.05) and  
 
 b.  A damage probability, Pf > 40 percent is expected sometime during the lifetime of the 
structures.  This is acceptable if the damage can be repaired (economically) and if the additional risk 
is understood.   
 
 Item 3.  Using artifically manufactured units (concrete cubes, tetrapods, Core-Loc®, etc.) can 
greatly reduce the level of risk by allowing Pf to decrease (say Pf = 0.05) including the appropriate (H 
and (F factors and repairing the damage on the CBBT island revetments.  This will be shown in 
Example Problem VI-7-15.   
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EXAMPLE PROBLEM VI-7-12 
 
FIND: 
 The weight of armor stone placed as a permeable, nearshore breakwater with overtopped wave 
conditions.   
 
GIVEN: 
 A permeable structure (nearshore, detached breakwater) has a slope of 1 on 2.5 and is subject to a 
design, significant wave height, Hs of 2.0 m (6.56 ft) measured at a gauge located in a depth, d = 4.5 
m (14.8 ft).  Design wave peak period, Tp = 8 s.  Design water depth at the structure toe, dtoe = 3.0 m 
(9.8 ft).  From Example Problem, VI-7-2 for these conditions, runup, RU2% is 3.5-4.5 m above the 
SWL, hence some wave overtopping occurs.   
 
SOLUTION: 
 From Example Problem VI-7-1, linear wave theory shoaling to the structure toe gave: 
(Hs)toe = 2.16 m (7.09 ft).  However, it was noted in Example Problem VI-7-8 that this value of Hs 
exceeded the depth-limited energy-based wave height.  So a value of (Hs)toe = 0.6 d = 0.6 (3.0 m) = 
1.8 m (5.9 ft) was used.   
 
ASSUMPTIONS: 
 (See Tables VI-5-22, VI-5-24, and VI-5-25 for conventional, two-layer armor stone designs.  
Also see Figure VI-5-11 for notational permeability coefficients.) 
 
1.  Fresh water  Dw = 1,000 kg/m3 
2.  Rock  Dr = 2,650 kg/m3 
3.  Two-layers  n = 2, random placement 
4.  Quarrystone, rough, angular 
5.  No-damage criteria (see Table VI-5-21 for valves, D and S) 
 
Item 1.  Hudson (1974), Shore Protection Manual (1984) 
 
See Example Problem VI-7-8 for results which do not change for rubble-mound revetment or 
nearshore breakwaters:    
 
(a)  Nonbreaking waves KD = 4, H1/10 = 1.27 (1.8 m) = 2.28 m (7.5 ft) 
 W50 = 6,859 N (1,542 lb) 
 Dn50 = 0.64 m (2.1 ft) 
 
(b)  Breaking waves, KD = 2, Hb = 2.34 m (7.7 ft) 
 W50 = 14,830 N (3,334 lb) 
 Dn50 = 0.83 m (2.7 ft) 
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EXAMPLE PROBLEM VI-7-12 (Continued) 
 
The Hudson formula was originally developed for nonovertopped slopes, but has been often applied 
to cases with moderate to substantial wave overtopping.  In these cases, stone weights estimated with 
the Hudson equation will be conservative.   
 
Item 2.  Van der Meer (1991) Table VI-5-24. 
 
Van der Meer (1991) developed an overtopping reduction factor, fi given by Equation VI-5-71 in 
Table VI-5-24 to modify the original van der Meer (1988) stability formulas (Equations VI-5-68 and 
VI-5-69.  The calculated Dn50 value is reduced by fi, and the relative freeboard Rc/Hs plays an 
important role in the factor, fi .  Here, Rc is the same as defined for overtopping depicted in Figure VI-
5-14.   
 
(a)  Nonovertopping conditions - impermeable revetment 
 Recall from Example Problem VI-7-8 when 
 
  P = 0.1 (impermeable) 
  Nz $ 7,500 (t = 16-17 hr) 
  S = 2 (no damage condition) 
  >m < >mc 
 
then for plunging wave conditions 
 
  Dn50 = 0.89 m (2.9 ft) 
  W50 = 18,327 N (4,120 lb) 
 
(b)  Overtopping conditions 
 
The van der Meer (1991) equations can be written 
 

 0.2 0.18 0.5

50

0.16.2s
m

n

i
z

f H
S P

D
N ξ −−=

Δ
 plunging (>m < >mc) 

 
and  

 ( )0.50.2 0.13 0.1

50

1.0 S cot Pi s
z m

n

f H
P N

D
α ξ− − −=

Δ
 surging (>m > >mc) 
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EXAMPLE PROBLEM VI-7-12 (Continued) 
 
where:   
 

 
1

1.25 4.8
2π

−

= −
⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

opc
i

s

R
f

H

s
 (VI-5-71) 

 
within limits 
 

 0 0.052
2π

< <opc

s

R
H

s
 

 
Note that now, the peak period wave steepness, sop, is employed.  It is convenient to set up a 
spreadsheet solution to investigate how Dn50 and W50 vary with relative freeboard, Rc/Hs.  First 
consider the case (unlikely) for an impermeable, nearshore breakwater design.   
 
(i) Impermeable, P = 0.1 
 

 Relative 
Freeboard, 
Rc/Hs 

Rc 
m                (ft) 

Dn50 
m             (ft) 

W50 
N          (tons) fi Remarks 

 

 
1.0 1.8            (5.9) 0.89          (2.9) 18,327   (2.06) 1.000 Exceeds Limit 0.052 

 

 
0.85 1.53        (5.02) 0.86        (2.82) 16,556   (1.86) 0.969  

 

 
0.75 1.35        (4.43) 0.84        (2.75) 15,377   (1.73) 0.946  

 

 
0.50 0.90        (2.95) 0.79        (2.60) 12,883   (1.45) 0.892  

 

 
0.0 0                 (0) 0.71        (2.33) 9,304    (1.05) 0.800 Limit Value = 0 

 

 
As the relative freeboard, Rc/Hs decreases, more wave overtopping occurs, and the stable armor-layer 
weight also decreases, over the limiting factor range 0.8 < fi < 1.0.  
 
(ii) Permeable, P = 0.4 or 0.5 
 
The primary application of the original van der Meer (1988) formulation with modification by the 
reduction factor, fi, is for permeable structures such as nearshore breakwaters.  The following tables 
illustrate application to permeable structures using the same wave and structure parameters.   
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EXAMPLE PROBLEM VI-7-12 (Continued) 
 
VI-7-12 
 

 
P = 0.4 (see Figure VI-5-11) 

 

 Relative 
Freeboard, 
Rc/Hs 

Rc 
m             (ft) 

Dn50 
m            (ft) 

W50 
N          (tons) fi 

Limit 
Parameter 

 

 
1.0 NOT APPLICABLE >0.052 Remarks 

 

 
0.85 1.53      (5.02) 0.67     (2.20) 7,830     (0.88) 0.969  

 

 
0.80 1.44      (4.73) 0.66     (2.17) 7,545     (0.85) 0.957  

 

 
0.75 1.35      (4.43) 0.65     (2.15) 7,274     (0.82) 0.946  

 

 
0.50 0.90      (2.95) 0.62     (2.02) 6,094     (0.68) 0.891  

 

 
0.25 0.45      (1.48) 0.58     (1.91) 5,156     (0.58) 0.843  

 

 
0.10 0.18      (0.59) 0.56     (1.85) 4,684     (0.53) 0.817  

 

 
0.05 0.09      (0.30) 0.56     (1.85) 4,540     (0.51) 0.808  

 

 
0 0                (0) 0.55     (1.82) 4,400     (0.49) 0.800 0 

Going from P = 0.1 
(impermeable to 
P = 0.4 (permeable) 
produces a 50% or 
one-half lower 
weight requirement 

 

 
P = 0.5 (Permeable, D core = 0.3 D armor 

 

 
1.0 NOT APPLICABLE >0.052 

 

 
0.85 1.53      (5.02) 0.64     (2.11) 6,942    (0.78) 0.969  

 

 
0.80 1.44      (4.73) 0.66     (2.09) 6,689    (0.75) 0.957  

 

 
0.75 1.35      (4.43) 0.63     (2.06) 6,448    (0.72) 0.946  

 

 
0.50 0.90      (2.95) 0.59     (1.94) 5,402    (0.61) 0.891  

 

 
0.25 0.45      (1.48) 0.56     (1.84) 4,570    (0.51) 0.843  

 

 
0.10 0.18      (0.59) 0.54     (1.78) 4,152    (0.47) 0.817  

 

 
0.05 0.09      (0.30) 0.53     (1.76) 4,024    (0.45) 0.808  

 

 
0 0                (0) 0.53     (1.76) 3,901    (0.44) 0.800 0 

 
 
 
Going from P = 0.4 
to P = 0.5 gives a 
11.3% drop in W50 

 

 
The value of P =0.6 is reserved for permeable breakwaters built with no core and homogeneous sized 
units as discussed in Example Problem VI-7-13.   
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EXAMPLE PROBLEM VI-7-12 (Continued) 
 
Note the significant (50% or more) reduction in the stable armor weight requirements due to the 
permeability, P, of the typical nearshore breakwater designs with a core.   
 
SUMMARY:   
 
Item 1.  The Hudson formula is not applicable for wave overtopping conditions because it gives 
conservative results.   
 
Item 2.  Use the van der Meer (1991) formula to determine Dn50, then reduce Dn50 by the factor, fi.   
 
Item 3.  The reduction factor lies in the range 0.8 < fi < 1.0 where 
 
 0.8      at / 0i c sf R H= =  zero freeboard 
and 
 

 1.0      at 0.052 
2

opc
i

s

R
f

H

s
π

= =  limit 

 
Item 4.  At limit of zero freeboard, Rc = 0, fi = 0.8.   
 
 3

50 50nW D=  
 
Weight  reduction = (0.8)3 = 0.512 or almost a 50% drop.   
 
Item 5.  At limit fi = 1.0 with 
 

 
2

2π

= =s s
op

op
p

H H
gL T

s  

 
the limit for Equation VI-5-71 is 
 

 

1/ 2

2

1/ 2

2

2
2
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s
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c s
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R H
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R H
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⎝ ⎠
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 EXAMPLE PROBLEM VI-7-12 (Concluded) 
 
Thus, for a range of practical wave heights 1.0 < Hs < 10.0 m and peak periods, 3 < Tp < 21 s, a table 
can be prepared to calculate the maximum values of Rc/Hs at the 0.052 limit.  This gives a practical 
range of (Rc/Hs)max values as shown in the table below.   
 

 
(Rc/Hsmax) Values at Limit = 0.052 

 

 
Peak Period, Tp 

 

 Hs 
m             (ft) 3 6 9 12 15 18 21 

 

 

1.0          (3.28) 0.49 0.98 1.49 1.95 2.44 2.93 3.42 
 

 

2.0          (6.56) 0.35 0.69 1.04 1.38 1.73 2.07 2.42 
 

 

3.0          (9.84) 0.28 0.56 0.85 1.13 1.41 1.69 1.97 
 

 

4.0          (13.1) 0.24 0.49 0.73 0.98 1.22 1.47 1.71 
 

 

5.0          (16.4) 0.22 0.44 0.66 0.88 1.09 1.31 1.53 
 

 

7.0          (23.0) 0.19 0.37 0.55 0.74 0.92 1.11 1.29 
 

 

10.0        (32.8) 0.15 0.31 0.46 0.61 0.77 0.93 1.08 
 

 

 
For (Rc/Hs) values greater than in the table, nonovertopping conditions prevail.   
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EXAMPLE PROBLEM VI-7-13 
 
FIND: 
 The weight of armor stone placed as a permeable, nearshore breakwater with submerged 
water-level conditions.   
 
GIVEN: 
 The same data as for Example Problem VI-7-12 except now the design water depth, dtoe 
increases to submerge the structure.  Assume Hs does not change as water level increases.   
 
 cot α = 2.5 
 (Hs)toe = 1.8 m (5.9 ft) 
 Tp = 8 s 
 ρw = 1,000 kg/m3 (fresh water) 
 ρr = 2,650 kg/m3 (rock) 
 n = 2 layers, random placement quarrystone, rough angular, no-damage criteria, S = 2 
 dtoe = varies 
 
SOLUTION: 
 
Method 1.  van der Meer (1991) Table VI-5-25 
 
For irregular, head-on waves and data for cot α = 1.5, 2 slopes, van der Meer (1991) developed the 
formula 
 
 hc′/h = (2.1 + 0.1 S) exp (-0.14 Ns

*)        (Equation VI-5-72) 
 
where 
 
 hc′ = crest height of structure above sea level 
 h = water depth 
 h – hc′ = water depth over the structure crest 
 S = relative eroded area, (damage level) 
 
and 
 
 Ns

* = spectral stability number 
 

  1/ 3

50

s
p

n

H s
D

−=
Δ
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EXAMPLE PROBLEM VI-7-13 (Continued) 
 
with  
 
 sp = Hs/Lp 
 
where Lp is the local wavelength based on peak spectral period, Tp.   
 
To determine the stable, armor stone diameter and weight, Equation VI-5-72 is solved first for a given 
hc′/h ratio and sp value to calculate Ns

*.  Then rearrange Ns
* to solve for Dn50, i.e.,  

 

 
( )

( )
* /1 ln

0.14 2.1 0.1
c

s
h h

N
S

⎡ ⎤′
= − ⎢ ⎥

+⎢ ⎥⎣ ⎦
 

 
A spreadsheet solution aids the calculation process.  Note that the slope does not enter into the 
calculation and the empirical formula VI-5-72 has only been developed for two slopes.   
 
ASSUMPTIONS:   

1. Assume VI-5-72 also applicable when cot α = 2.5.   
2. Using S = 2 gives the no-damage results.   
3. Assume crest height, hc′ = 3.0 m above seabed.   

 

hc′/h h/hc′
 

Water Depth, h 
m      (ft) 

Diameter, Dn50 
m     (ft) 

Weight, W50 
N  (tons) Ns

* Remarks 
1.1 Overtopped, not submerged, use Equation VI-5-71, hc′ = 3.0  

1.000 1.0 3.0   9.8 0.52 1.72 3,742 0.42 5.95 Rc = 0 
0.909 1.1 3.3 10.8 0.48 1.57 2,826 0.32 6.63  
0.833 1.2 3.6 11.8 0.44 1.45 2,249 0.25 7.25  
0.769 1.3 3.9 12.8 0.41 1.36 1,858 0.21 7.82  
0.714 1.4 4.2 13.8 0.39 1.29 1,579 0.18 8.35  
0.667 1.5 4.5 14.8 0.38 1.23 1,372 0.15 8.85  
0.625 1.6 4.8 15.7 0.36 1.18 1,212 0.14 9.31  
0.588 1.7 5.1 16.7 0.35 1.14 1,087 0.12 9.74  
0.556 1.8 5.4 17.7 0.34 1.10 985 0.11 10.15  
0.526 1.9 5.7 18.7 0.33 1.07 902 0.10 10.53  
0.500 2.0 6.0 19.7 0.32 1.04 832 0.09 10.90  

 
The inverse of the hc′/h ratio in Equation VI-5-72 is the relative submergence ratio h/hc′ > 1.0.  At 
h/hc′ = 1.0 the water level is at the structure crest and this condition is equal to Rc = 0 as relative 
freeboard, Rc/Hs in Equation VI-5-71 when fi = 0.8 (see previous Example Problem VI-7-12).  
Because the given data are the same for both Example Problem VI-7-12 and this problem VI-7-13, 
then the rock size Dn50 and weight W50 should coincide at these extreme limits of these equations. 
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 EXAMPLE PROBLEM VI-7-13 (Concluded) 
 
From Equation VI-5-71, at the limit when Rc/Hs = 0 (zero freeboard) the following values 
were obtained in Example Problem VI-7-12.  These are compared to the W50 of 3,742 N (0.42 
tons) found in this example for hc′/h = 1.0.   
 

P Dn50 (m)  (ft) W50, (N)  (tons) Remarks 
0.1 0.71  2.33 9,304  (1.05) Substantially higher 
0.4 0.55  1.82 4,400  (0.49) Little higher 
0.5 0.53  1.76 3,901  (0.44) nearly the same 

 
Therefore, it can be concluded that Equation VI-5-72 applies to permeable structures and 
may not be appropriate for submerged, impermeable structures.   
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EXAMPLE PROBLEM VI-7-14 
 
FIND:   
 Select the armor stone size to withstand the design water level and wave conditions for a 
rubble-mound, nearshore breakwater constructed of homogeneous units with no core, i.e., permeable. 
 
GIVEN: 
 Breakwater crest elevations +4.0 ft, +5.0 ft, +6.0 ft (MLW) (1.22, 1.52, 1.83 m) 
 

 
Design Water Levels Design Wave Conditions  

 Recurrence 
Interval, Tr,  
years 

Storm Surge, S 
ft 

(MLW)          (m) 

Wave Height, Hs 
ft                (m) 

Wave 
Period, T 
(sec) Remarks 

 

 1 3.6              (1.10) 5.0          (1.52) 5.6 Storm surge 
and waves at 
structure toe 

 

 10 4.5              (1.37) 5.6          (1.71) 6.5   

 25 5.2              (1.58) 6.5          (1.98) 7.6   

 50 6.0              (1.83) 7.2          (2.19) 9.7   

   
(See Figure VI-7-4) 
 
Tidal range, MTR = 1.0 ft (0.3 m) 
Elevation at BW location = -3.5 ft (MLW) = Z (-1.07 m) 
Vertical datum, MLW = 0.0 ft 
Assume crest width, B = 5.0 ft (1.52 m) 
 
Note:  Values of Hs determined by numerical model.  In some cases ratio of Hs to design water depth 
exceeds 0.6, which is the depth-limit value to use when more accurate methods are not available.   
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Figure VI-7-4.  Homogeneous breakwater cross section 
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EXAMPLE PROBLEM VI-7-14 (Continued) 
 
Overtopping and submergence 
 
Because of storm surge, some conditions will produce complete submergence so the breakwater acts 
as a low-crested reef.  Table VI-5-27 gives Equation VI-5-73 as proposed by van der Meer (1990) 
using data by Ahrens (1987) and van der Meer (1990).   
 

 
( )*exp

t
c

s

Ah
aN

=  

 
where hc = hc

′ is the no-damage condition.  The equilbrium profile changes when wave energy 
reshapes the cross section to give a lower crest elevation height, hc (damaged).  The equilibrium area, 
At remains unchanged.  The stability number is defined as  
 

 * 1/3

50

s
s p

n

HN s
D

−=
Δ

 

 
where sp is the wave steepness based on Tp and local wavelength.   
 
Also, the parameter, a, is given by  
 

 
( )

( )
' 2

9
2 4' 50

0.028 0.045 0.034 6 10t c t

nc

A h Aa
h Dh

−= − + + − ×  

 
Note that the stable stone size, Dn50, hence stable weight, W50, is found by: 
 

(i) Specifying the reef breakwater dimensions, hc′, B, and cot α, so the cross-sectional area 
At can be calculated.   

 
(ii) Calculating a for a given water depth, h.  (The formula for a is truncated, omitting the 

small last term.) 
 

(iii) Calculating Ns
* when hc = hc′.   

 
(iv) Calculating sp = Hs/Lp, the local wave steepness.   

 
(v) Calculating Dn, i.e.   

 

 1/ 3
50 *

s
n p

s

HD s
N

−=
Δ
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EXAMPLE PROBLEM VI-7-14 (Continued) 
 

(vi) and finally, calculating the homogeneous stone weight, W, from 
 

W = ρsg (Dn)3 
 
Again, a spreadsheet solution aids the calculation process.  Figure VI-7-5 illustrates the possible cases 
for design calculation.  Calculations on the following table assumed rock specific weight of 165 lb/ft3 
and Δ = 1.58 (salt water).   
 

 
Figure VI-7-5.  Variations in design water level and breakwater crest elevations 
 
As expected, the rarer events with low exceedance probabilities each year (higher recurrence 
intervals) with larger wave heights require larger stones for stability.  The crest elevation selected 
depends upon economics, allowable wave transmission, and resulting shoreline adjustment in the lee 
of each nearshore breakwater structure.   
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EXAMPLE PROBLEM VI-7-14 (Continued) 
 
 

Case 1.  Crest Elevation +4.0 ft (MLW) hc
* = 7.5 ft 

Wave Conditions Reef (Homogenous) 
Recurrence 
Interval 
Tr, years 

Water 
Depth h 
ft 

Hs  
ft 

Tp, sec 
(Tm) 

Dn  
ft 

W 
lbs Remarks 

1.0 8.1 5.0 5.6 1.07 199 Sub 

10.0 9.0 5.6 6.5 1.19 281 Sub 

25.0 9.7 6.5 7.6 1.38 436 Sub 

50.0 10.5 7.2 9.7 1.60 674 Sub 

Case 2.  Crest Elevation +5.0 ft (MLW) hc′ = 8.5 ft 
1.0 8.1 5.0 5.6 1.13 236 Overtop 

10.0 9.0 5.6 6.5 1.26 328 Sub 

25.0 9.7 6.5 7.6 1.45 504 Sub 

50.0 10.5 7.2 9.7 1.67 773 Sub 

Case 3.  Crest Elevation +6.0 ft (MLW) hc′ = 9.5 ft 
1.0 8.1 5.0 5.6 1.19 278 Overtop 

10.0 9.0 5.6 6.5 1.32 383 Overtop 

25.0 9.7 6.5 7.6 1.52 584 Sub 

50.0 10.5 7.2 9.7 1.75 889 Sub 

 
This example problem was taken from Appendix A “Case Design Example of a Detached Breakwater 
Project” in Chasten et al. (1993).  It is a real, constructed project for the community of Bay Ridge, 
Anne Arundel County, Maryland, on the western shore of the Chesapeake Bay near Annapolis.  
Example Problem V-3-1 in the cited report described the functional design of the breakwater layout 
(spacing distance offshore, length, etc.).  A crest elevation of +4.0 ft (MLW) was selected for design.  
Structural stability design conditions were also given for the homogenous sized stone.  Design 
conditions selected were:   
 
 Tr =  25 years 
 Hs =  6.5 ft 
 Tp =  7.6 s 
 DSWL =  +5.2 ft (MLW) 
 h =  9.7 ft (MLW) 
 
The Hudson (1974) formula and Shore Protection Manual (1984) coefficients were used in the 
analysis.  The breaking wave Hudson coefficient, KD = 2.0 gives 
 
 Dn =  2.85 ft 
 W =  3,830 lb 
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 EXAMPLE PROBLEM VI-7-14 (Concluded) 
 
The range of stone sizes accepted was 2,500-4,500 lb.  The cross-sectional sketch of Figure VI-7-4 
was taken from Chasten et al. (1993) Appendix A.  It shows the large stone placed at the bottom for 
toe protection.  The crest width B was 9.0 ft using three stone widths.   
 
Use of the Hudson formula for Case 1 with completely submerged conditions gives stone weights 
over eight times heavier than required for these design conditions (436 lb – vs. – 3,830 lb).  Even for 
the 50-year recurrence interval conditions, the Hudson formula results are roughly five times heavier.  
The crest width, based on three stone widths could also be reduced (6 ft – vs. – 9 ft which translates 
into less stone volume required and less costs).   
 
SUMMARY: 
 The Hudson formula was not meant to be applied for these conditions and is far too 
conservative. 
 
 The Coastal Engineering Manual presents stone stability formulations that give practical 
information for a range of water depths and waves impacting nearshore breakwaters.   
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EXAMPLE PROBLEM VI-7-15 
 
FIND:   
 The weight and type (natural or artificial, concrete units) for repair of the north jetty at Barnegat 
Inlet, New Jersey.   
 
GIVEN:   
 The “Information Report on Effects of the North Jetty Repair on Navigation,” especially 
Chapter 4, ‘Hydraulic Analysis’ (U.S. Army Engineer District, Philadelphia, 2001).  Bathymetry from 
field surveys and numerical modeling of storm surge, water levels and wave conditions produced 
parameters with a range of frequency distributions.  These permitted “sensitivity testing” for 
combined storm surge and wave conditions.   
 
The design criteria specified less than 5 percent armor displacement or less than 0.5-ft crest elevation 
reduction for “storm conditions” at the 2 percent exceedance probability level in any one year, i.e., the 
50-year recurrence interval.  These criteria resulted in:   
 
 Storm surge = +8.1 ft (MLLW) 
 Wave height, Hm0 = 13.8 ft (near structure head and toe) 
 Seabed elevation = -24ft (MLLW) (near structure head) 
 
The raised jetty crest elevation was to be at +7.8 ft (MLLW). 
 
SOLUTION:   
 Additional Assumptions:  Sea water, ρ = 1.99 slugs/ft3, γ = 64 lb/ft3 

       Rock, ρs = 5.14 slugs/ft3 

                2.58sρ
ρ

=  

 
Use English System of units as given in USACE (2002).   
 
Item 1.  Natural Stone Armor Layer – Trunk 
 
Assume quarrystone is available for all sizes required and construction equipment available for 
placement.   
 
 a.  Hudson (1974) – Nonovertopped slopes 
 

• Assume rough, angular, two layers 
• Use no partial safety factors (Table VI-6-4) 
• Assume nonbreaking wave conditions (Hm0/h) <0.6 
• Use KD = 4.0 
• Use H0.1 = 1.27 Hm0 for design wave 
• Use Eq. VI-6-43,  
• W50 = ρs g Dn50

3 
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EXAMPLE PROBLEM VI-7-15 (Continued) 
 

cot α W50 (lb) 
1.5 37,646 
2.0 28,235 
2.5 22,588 
 
No wave period, structure permeability, or storm duration effects are considered in the Hudson 
method.  Damage is assumed to be between 0-5 percent.   
 

b. van der Meer (1988) – Nonovertopped slopes 
 
Additional assumptions include:   
 

• Rock jetty, notational permeability, P = 0.4 
• Nominal damage level, S = 2 (investigate W for S = 5) 
• Number of waves, Nz = 2,500 (investigate W for Nz = 5,000, 7,500) 
• Wave period, Tp = 14 s (investigate W for Tp = 11 s, 9 s) 
• Use Hm0 for design wave 

 
The wave periods are taken from Table 4-11 for storm conditions as investigated in the report (Corps 
2002).  The results are found as follows when surging or plunging formulas are applicable, again with 
no partial safety factors.  Mean period, Tm, was assumed to be 0.83 Tp.   
 
Tp cot α W (lb) Type Applicable Eq. 

1.5 45,080 Surging VI-6-45 
2.0 34,788 Plunging VI-6-44 14.0 sec 
2.5 24,892 Plunging VI-6-44 

 
Effects of wave period 
 
Tp cot α W (lb) Type Applicable Eq. 

1.5 37,402 Plunging 
2.0 24,291 Plunging 11.0 sec 
2.5 17,381 Plunging 

VI-6-44 

1.5 27,680 Plunging 
2.0 17,977 Plunging 9.0 sec 
2.5 12,863 Plunging 

VI-6-44 

 
It is clear that the longer period, Tp = 14 s (Tm = 11.6 s) requires heavier natural stones from the 
quarry.  All are plunging type, except for cot α = 1.5 and Tp = 14 s.  But the storm surge will cause 
wave overtopping of the relatively low jetty crest.   
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EXAMPLE PROBLEM VI-7-15 (Continued) 
 

c. van der Meer (1991) – Overtopping slopes 
 
Now the relative freeboard (water depth – jetty crest) must be considered.  This will vary as the total 
water level (storm surge, hydrograph plus local tidal range) changes during a storm event.  Consider a 
freeboard range, 8 ft, 5 ft, 3 ft, 1 ft, 0 ft and Equation VI-5-71 used to reduce the values determined 
from van der Meer’s Equations VI-6-44 and VI-6-45.  To begin, assume design wave height, Hm0 = 
13.8 ft remains constant as the storm surge increases, and Tp = 14 s.   
 
 Stone Weights, W for Freeboard, Rc (ft) 
cot α 8 ft 5 ft 3 ft 1 ft 0 ft Type 
1.5 32,057 28,209 25,980 23,890 23,056 S 
2.0 24,817 21,838 20,113 18,564 17,849 P 
2.5 17,739 15,610 14,377 13,270 12,759 P 
 
The results reveal how overtopping reduces the stone weight requirements as formulated by van der 
Meer (1991).  The largest freeboard possible is actually +7.8 ft at MLLW with no storm surge 
present.  At the other extreme, with the design storm surge condition of +8.1 ft (MLLW), the structure 
actually becomes submerged.   
 

d. van der Meer (1991) – Submerged conditions 
 
The crest height, hc′ = 7.8 ft + 24 ft water depth = 31.8 ft (from sea bottom).   
The design storm surge water depth, h = 8.1 ft + 24 ft water depth = 32.1 ft (from sea bottom).   
 
The van de Meer (1991) formulation, Equation VI-5-72, uses the relative submergence, hc′/h, and all 
results are independent of structure slope, α.   
 
The required stone weights decrease slightly with minor increases in submergence as illustrated as 
follows for Hm0 = 13.8 ft, Tp = 14.0 s.   
 
 Stone Weights, W (lb) for Submergence Levels h - hc

′ (ft) 
cot α 0 ft 0.1 ft 0.2 ft 0.3 ft 0.5 ft 
1.5 und 16,266 16,109 15,953 15,801 
2.0 und 16,266 16,109 15,953 15,801 
2.5 und 16,266 16,109 15,953 15,801 
 
The design case is for 0.3-ft submergence = hdesign – hc = 32.1 - 31.8 ft. 
 

e. Effect of storm duration, t (hr) 
 
All of the preceding results are for Nz = 2,500 waves and for Tp = 14 s which is roughly, Tm = 11.6 and 
t = 8-hr storms.  It is instructive to consider increased storm durations shown as follows.  Armor 
weights are in pounds 
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EXAMPLE PROBLEM VI-7-15 (Continued) 
 
 

cot α 
Nz = 2,500 
t = 8 hr 

Nz = 5,000 
t = 16 hr 

Nz = 7,500 
t = 24 hr Type 

1.5 45,080 55,500 62,679 S 
2.0 34,788 42,829 48,369 P 
2.5 24,892 30,646 34,610 P 
 
 
These results return to the basic, nonovertopping formulations (Equations VI-6-44 and VI-6-45), for 
illustration purposes only.  The longer storms may produce increased levels of the related damage 
parameter, S, as illustrated as follows.   
 
The longest storm duration is recommended at Nz = 7,500 waves, beyond which, no increased effects 
are found.   
 

f. Effect of damage parameter, S 
 
All the preceding results are for S = 2.0, which is the nominal, almost zero-level damage parameter 
recommended.  Increasing the damage parameter S to 5.0 will reduce the stable stone weight required, 
as illustrated as follows.  This level is more consistent with longer storms with more waves.  Armor 
weghts are given in pounds, and Eqs. VI-6-44 and VI-6-45 were used.   
 
 

cot α 
Nz = 2,500 
t = 8 hr 

Nz = 5,000 
t = 16 hr 

Nz = 7,500 
t = 24 hr 

Type 

1.5 26,015 32,028 36,171 S 
2.0 20,075 24,716 27,913 P 
2.5 14,365 17,685 19,973 P 
 
 
Again, these results return to the basic, nonovertopping formulations, for illustrative purposes.   
 
The nominal stone diameter for cot α = 1.5, Nz = 7,500 waves, S = 5.0, and undersurging conditions 
with W50 = 36,171 lb is:   
 
 Dnom = 6.02 ft 
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EXAMPLE PROBLEM VI-7-15 (Continued) 
 

g. Discussion/Summary 
 

Point 1.  The time phase relationship between storm surge hydrograph (including local tidal 
range) and the wave energy variation is important because the required stable stone weight varies 
considerably under nonovertopping, overtopping, and submerged conditions.  Design for the 
combination that gives the largest armor stone weight.   
 
Point 2.  Increased storm duration increases armor weight requirements.  A compromise is to 
accept more damage by increasing the nominal damage parameter from S = 2 to S = 5.   

 
Point 3.  Many factors not considered in the Hudson formulation can be included in the van der 
Meer formulation to give design insight regarding their importance.   

 
Point 4.  Partial safety factors can also be included to increase the stable stone weights required 
and increase the corresponding reliability.  These should be studied for overtopped to submerged 
conditions.   

 
Point 5.  For design, consider for TRUNK SECTION ONLY the following values.   

 
cot α W, lb W, tons Remarks 
1.5 
2.0 
2.5 

36,000 
28,000 
20,000 

18 
14 
10 

These recommended values include overtopping,  
S = 5%, long storms, and are similar to Hudson (1974) 

 
Point 6.  Physical model studies should be conducted for verification.  This is especially true for 
the head section.   

 
Point 7.  Artificial, concrete armor units, e.g., Core-Loc®, must also be considered, as discussed 
as follows.   

 
 
Item 2.  Artificial, concrete armor units 
 

a. Core-Loc®  Non – or marginally-overtopped slopes 
 

These units are discussed in Table VI-5-34 and in Melby and Turk (1994).  Hereafter, 
referred to as Core-Loc, they have been under development since July 1992 by the U.S. Army 
Corps of Engineers.  They incorporate all the following features that were previously distinct 
weaknesses of existing armor unit shapes (Melby and Turk 1994):   

 
1. High hydraulic stability when placed in a single-unit thickness at any slope angle 

 
2. Reserve stability for wave conditions that exceed the design event 
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EXAMPLE PROBLEM VI-7-15 (Continued) 
 

 
3. No tendency for units to rock on slope 

 
4. Continued stability when broken or following renesting resulting from local instability 

 
5. Efficient combination of porosity and slope roughness to dissipate the maximum wave energy 

(and reduce wave runup) 
 

6. Maximum performance with a minimum concrete armor unit volume 

7. Hydraulically stable when placed as a repair with other shapes 

8. Low internal stresses, so no reinforcement required 

9. Easy to cast 

10. Easily constructed armor layer (single-unit-thickness), even in low visibility water 

11. Uses minimal casting yard or barge space 

12. Utilizes conventional construction materials and techniques 

 

b.  Example of a single-unit-thickness concrete armor layer, randomly placed:   

For irregular, head-on waves, the Hudson formula has been applied, i.e.,  

 

 
3

3

1 cot

c s

c
D

w

g HW

K

ρ

ρ α
ρ

=
⎛ ⎞

−⎜ ⎟
⎝ ⎠

 

 
as Equation VI-5-81 multiplied by the gravity constant, g, where:   
 
 Hs = the significant wave height 
 ρc = mass density of concrete 
 ρcg = γc = unit weight concrete (assume = 140 lb/ft3) 
 ρw = mass density of water in which unit is placed 
 
For irregular, depth limited, breaking waves (plunging to collapsing), and the zero-damage condition 
(little or no rocking), 
 
 KD = 16 is recommended for trunk section stability 
 KD = 13 is recommended for head section stability 
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EXAMPLE PROBLEM VI-7-15 (Concluded) 
 
Results for the trunk section with KD = 16 are:   
 
cot α W, lb W, tons 
1.333 
1.5 
2.0 
2.5 

10,302 
9,155 
6,866 
5,493 

5.2 
4.6 
3.4 
2.8 

 
and, for the head section with KD = 13 
 
cot α W, lb W, tons 
1.333 
1.5 
2.0 
2.5 

12,680 
11,268 
8,450 
6,760 

6.3 
5.6 
4.2 
3.4 

 
Note that Core-Loc® units have been tested and remain stable on steeper slopes (3V:4H, cot α = 
1.333) which can be very important economically for deepwater applications requiring large stone 
volumes.   
 
The weight of the Core-Loc® units are roughly 3.5 to 4 times less than the rubble-mound stone armor 
units.  But many other factors are involved in selecting the type (natural or concrete units) for repair 
of the north jetty at Barnegat Inlet, New Jersey.  These factors include primarily: 
 
Factor 1.  Cost Data 
 

• Price of rock-fill per ton (including quarrying, transport, and positioning on structures) 
• Price of concrete armor unit, Core-Loc®, per cubic yard (including manufacture, handling, 

and positioning on structure) 
 
and  
 
Factor 2.  Construction Method/Available Equipment 
 

• From land or using offshore equipment 
• Crane capacity for lifting and span 

 
b. Other Artificial Concrete Unit Types 

 
Many other types (dolos, tetrapod, tribar, accropode, etc.) have been successfully applied, but all have 
weaknesses in one or more of the areas previously cited as strengths of the Core-Loc® design.  None 
have been specifically designed to be used as repair units.  For these reasons, it is recommended to 
use the Core-Loc® unit.   
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VI-7-5.  Stability of Vertical Walled Bulkheads and Caissons 

 
 
 

EXAMPLE PROBLEM VI-7-16 
 
FIND:   
 The width of a vertical walled, caisson-type breakwater/jetty structure for the north jetty site at 
Barnegat Inlet, New Jersey.   
 
GIVEN:   
 The same information as found in Example Problem VI-7-15 summarized here (using non-SI 
units as given in the report):   
 
 Recurrence interval for design, Tr = 50 years. 
 Spectral significant wave height for design, Hm0 = 13.8 ft.   
 Peak wave period, Tp = 14 s (consider also 11 s, 9 s).   
 Water depth near structure head, h = 24 ft (MLLW to seabed).   
 Storm surge for design, s = +8.1 ft (MLLW).   
 Structure crest elevation = +9.0 ft (MLLW).   
 Wave direction for design, β = 0 deg.   
 Seawater, γw = 64 lb/ft3.   
 Concrete, γc = 140 lb/ft3.   
 Sand, γs = 125 lb/ft3.   
 
SOLUTION:   
 Item 1.  Additional assumptions.   
 
 A suitable, rubble-mound foundation (core layer) with toe protection armor layer will support the 
concrete/sand-filled caisson structure.  Assume the bottom of the caisson structure h* is located at 
0.85 h water depth below datum (MLLW), so take 
 
 h* = caisson bottom depth (MLLW) 
 h* = 0.85 (h) = 0.85 (24 ft) = 20.4 ft 
 
assume 
 
 h* = 20 ft.  This leaves 4 ft for suitable rubble-foundation.   
 
Adding the structure crest elevation above MLLW gives the total caisson structure height, hw 
 
 hw = 20 ft +9.0 ft = 29.0 ft 
 

(Sheet 1 of 12) 



EM 1110-2-1110 (Part VI) 
1 Jun 06 

VI-7-70 Example Problems 

 

EXAMPLE PROBLEM VI-7-16 (Continued) 
 
The caisson concrete wall thickness, t, and concrete cap height, nt, can be varied where n is cap height 
multiplier of the wall thickness. 
 
assume 
 
 t = 2.0 ft 
 n = 2 
 
The rock thickness, r, for the toe armor layer can be specified as some fraction of the core layer depth, 
(h – h*).  Assume 
 
 r = 0.75 (h – h*) = 0.75 (4) = 3.0 ft 
 
Finally, the rock berm width, Bm, can be taken as some multiplier of the rock thickness, say 2r 
(ASSUME).   
 
 Bm = 2r = 6.0 ft 
 
Item 2.  Calculated dimensions 
 
See the sketch in Table VI-5-53 (Goda formula for irregular waves) for additional, dimensions.   
 
Total water depth, 
 
 hs = h + s 
 hs = 24.0 ft + 8.1 ft = 32.1 ft 
 
Structure submerged depth, 
 
 h′ = h* + s 
 h′ = 20 ft + 8.1 ft = 28.1 ft 
 
Armor rock depth, 
 d = h′ – r 
 d = 28.1 ft – 3.0 ft = 25.1 ft 
 
Freeboard 
 hc = hw - h′ = 29.0 ft – 28.1 ft = 0.9 ft 
 
Item 3.  Calculated coefficients and pressures 
 

3.1.  Wave height for design, Hdesign 
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EXAMPLE PROBLEM VI-7-16 (Continued) 
 
As seen in Table VI-5-53, most of the coefficients (αi) and pressures (p) for the net wave pressure 
distribution against the vertical wall depend on Hdesign.  If seaward of the surf zone, Goda (1985) 
recommends for practical design.   
 
 Hdesign = 1.8 Hs = 1.8 (13.8 ft) = 24.8 ft 
 
This is the wave height with only 0.15 percent exceedence of Rayeigh distributed waves or H1/250.   
 

3.2.   Coefficients 
 
The coefficients, α1, α2, and α3 depend upon the local wavelength, L, at a water depth, hb, and at a 
distance of 5 Hs seaward of the front wall of the vertical caisson.  This requires a further assumption 
of the bottom slope, m, seaward of the wall.   
 
Take 
 
 m = 1/100 
 
and also assume 
 
 Hs = Hm0 
 
Thus 
 hb = 5 (Hs) m + hs 

 hb = 5 (13.8 ft) (0.01) + 32.1 ft 
 hb = 32.8 ft 
 
For Tp = 14 s and hb = 32.8 ft, the local wavelength is  
 
 L = 439.1 ft 
 
Now find the coefficients α1, α2, and α3.   
 

 

( )

( )
( )

2

1

2

1

4 /0.6 0.5
sinh 4 /

4 32.1 ft / 439.1 ft
0.6 0.5

sinh 4 32.1 ft / 439.1 ft

0.980

s

s

h L
h L

π
α

π

π
π

α

⎡ ⎤
= + ⎢ ⎥

⎢ ⎥⎣ ⎦

⎡ ⎤
= + ⎢ ⎥

⎢ ⎥⎣ ⎦
=
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Now, the pressures against the vertical wall are calculated. 
 

2.1. Pressures 
 
The theoretical, zero pressure is at a vertical distance, η*, above the design water level.  This 
distance and the pressures, p1, p2, p3, and pu, all include a coefficient λ (λ1, λ2, λ3) that are 
“modification” factors depending on the structure type (i.e., inclined, curved, etc.).  For 
conventional, vertical wall structures,  
 
 λ1 = λ2 = λ3 = 1 
 

 

( )
( )( )( )

*
1

*

0.75 1 cos

0.75 1 cos 1.0 24.84

37.3 ft

design

o

H

O

η β λ

η

= +

= +

=

 

 
and  
 

 

( )( )( )

( )( )( )( )

2
1 1 1 2 *

2

2
1

0.5 1 cos cos

0.5 1 cos 1.0 0.980245 1.0 0.076563 cos 64 24.84

1680.07 lb/ft

w design

o o

p g H

O O

p

β λα λ α β ρ= + +

= + ⋅ + ⋅

=

 

 
and  
 

 
*

1*
2

*

1 for

  O             for 

c
c

c

h p h
p

h

η
η

η

⎧⎛ ⎞
− >⎪⎜ ⎟

= ⎨⎝ ⎠
⎪ ≤⎩

 

 
and clearly η* > hc so that  
 

 
( ) ( )2

2
2

1 0.3/ 37.3 1680.07

1693.58 lb/ft

p

p

⎡ ⎤= − −⎣ ⎦
=

 

 
Note that even though hc is negative when the storm surge level overtops the structure crest level, 
the pressure, p2, is calculated correctly.  As shown in Table VI-5-53, this simply means the 
pressure at the top of the structure, p2, is large than the design water level pressure, p.   
 
and  
 
 
 

EXAMPLE PROBLEM VI-7-16 (Continued) 
 
and 

 
( ) 2

2
2 smallest of  and 

3
designb

b design

Hh d d
h d H

α
⎡ ⎤− ⎛ ⎞
⎢ ⎥= ⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

 

Therefore,  

 
( )

( )
( )2

2
32.8 ft 25.1 ft 2 25.1 ft24.8 ft smallest of  and 

3 32.8 ft 25.1 ft 24.8 ft
α

⎡ ⎤− ⎛ ⎞= ⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦

 

 
 α2 = smallest of 0.0764 and 2.024 
 
 so α2 = 0.0764 
 
and  
 

 

( )
( )

( )( )

3

3

3

11 1
cosh 2 /

29.0 ft 0.9 ft 11 1
32.1 ft cosh 2 32.1 ft / 439.1 ft

0.9151
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s s

h h
h h L

α
π

α
π

α

⎡ ⎤−
= − −⎢ ⎥

⎢ ⎥⎣ ⎦
⎡ ⎤−

= − −⎢ ⎥
⎢ ⎥⎣ ⎦

=

 

 
and note 
 
 α* = α2 
 
so that 
 
 α* = 0.0764 
 
Now, the pressures against the vertical wall are calculated. 
 
 3.3.  Pressures 
 
The theoretical, zero pressure is at a vertical distance, η*, above the design water level.  This distance 
and the pressures, p1, p2, p3, and pu, all include a coefficient λ (λ1, λ2, λ3) that are “modification” 
factors depending on the structure type (i.e., inclined, curved, etc.).  For conventional, vertical wall 
structures,  
 
 λ1 = λ2 = λ3 = 1 
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EXAMPLE PROBLEM VI-7-16 (Continued) 
 

 

( )
( )( )( )
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and clearly η* > hc so that  
 

 
( ) ( )2

2

2
2

1 0.9 ft/37.2 ft 1,677 lb/ft
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p

p
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=
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2
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p pα=

=

=
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Take UFH = UFH = 1.0 as the stochastic, uncertainty and bias factors 
 

 ( )( ) ( )1 11.0 1680.07 1693.58 0.3 1680.07 1537.48 28.1
2 2

44,700 lbs

H

H

F

F

⎡ ⎤= + − + +⎢ ⎥⎣ ⎦
=

 

 
and, note, does not depend on B.   
 
The uplift force, FU is 
 

 ( )( )

1
2

11.0 1426.10 40
2

28522 lbs

U FH u

U

U

F U p B

F

F

⎡ ⎤= ⋅⎢ ⎥⎣ ⎦
⎡ ⎤= ⎢ ⎥⎣ ⎦

=

 

 
The structure weight (in air and in water) is more complicated.  The formula in Table VI-5-55 for 
FG says  
 
 FG = (ρcg) B⋅hw – (ρwg) B⋅h′ 
 
and is clearly 
 
 FG = (weight in air) – buoyant force of submerged structure 
 
where 
 
 ρcg = unit weight of the combined, concrete/sand structure 
 
Since the walls are concrete (γc = 140 lb/ft3) and is filled with sand (γs = 125 lb/ft3), clearly the 
total weight (in air) will depend on the wall thickness, t, and the cap dimension, nt.  Using the 
values 
 
 r = 2.0 ft 
 n = 2 
 B = 40 ft 
 
gives 
 
 Wair = Weight in air = 143,908 lbs 
 

EXAMPLE PROBLEM VI-7-16 (Continued) 
 
The bottom uplift pressure, pu, is not equal to p3 but found from  
 

 

( ) ( )
( )( )( )( )( )( )

3 1 3

o 3

2

0.5 1 cos

0.5 1 cos 0 1.0 0.980 0.9151 64 lb/ft 24.8 lb/ft

1,423 lb/ft

u w design

u

p g H

p

β λ α α ρ= +

= +

=

 

 
These pressures could be plotted to create the pressure distribution diagrams, similar to that shown in 
Table VI-5-53.   
 
Item 4.  Calculated forces and moments 
 
Specifying a structure width, B, is now needed which is the horizontal dimension normal to hw (not 
shown in Table VI-5-53).  For illustration purposes of the calculations, assume 
 
 B = 40 ft 
 
This structure width will significantly influence the structure weight (in air and water) and the uplift 
force on the bottom.   
 
Table VI-5-55 presents the resulting wave induced forces and moments (including uncertainty 
factors) when calculated from the wave load equations by Goda (Table VI-5-53), and Takahashi, et al. 
(Table VI-5-54).   
 
The formulas assume that the hydrostatic, horizontal pressures are in balance on both sides of the 
structure and are per running length of the structure (i.e., per unit length).   
 

4.1. Forces 
 
The horizontal force, FH is:   
 

 ( ) ( )1 2 1 3
1 1 '
2 2H FH cF U p p h p p h⎡ ⎤= + + +⎢ ⎥⎣ ⎦

 

 
Use the mean values of the uncertainty and bias factors as presented in Table VI-5-56.  So UFH = 0.90 
and UFU = 0.77 
 

 ( )( ) ( )2 2 2 21 10.9 1,677 lb/ft 1,636 lb/ft 0.9 ft 1,677 lb/ft 1,535 lb/ft 28.1 ft
2 2

41,958 lb/ft

H

H

F

F

⎡ ⎤= + + +⎢ ⎥⎣ ⎦
=
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EXAMPLE PROBLEM VI-7-16 (Continued) 
 

 
The uplift force, FU, depends on caisson width, B.   
 

 

( )

( )( )2

1
2
10.77 1,423 lb/ft 40 ft
2

21,914 lb/ft

U FH u

U

U

F U p B

F

F

⎡ ⎤= ⎢ ⎥⎣ ⎦
⎡ ⎤= ⎢ ⎥⎣ ⎦

=

 

 
The structure submerged weight is more complicated.  The formula in Table VI-5-55 for FG says  
 
 FG = (ρcg) B⋅hw – (ρwg) B⋅h′ 
 
where 
 
 ρcg = unit weight of the combined, concrete/sand structure 
 
The first term is the total weight and the second term is the buoyant uplift force.   
 
Because the walls are concrete (γc = 140 lb/ft3) and the caisson is filled with sand (γs = 125 lb/ft3), 
clearly the total weight (per lineal foot) will depend on the wall thickness, t, and the cap dimension, 
nt.  Using the values 
 
 t = 2.0 ft 
 n = 2 
 B = 40 ft 
 
gives 
 
 Wconcrete = 140 lb/ft3 [(40 ft)(29 ft) – (36 ft)(23 ft)] = 46,480 lb/ft 

 Wsand = 125 lb/ft3 [(36 ft)(23 ft)] = 103,500 lb/ft 

 WTotal = 46,480 lb/ft + 103,500 lb/ft = 149,980 lb/ft 

 
Therefore,  
 

 
( )( )( )3149,980 lb/ft 64 lb/ft 40 ft 28.1 ft

149,980 lb/ft 71,936 lb/ft
78,044 lb/ft

G

G

G

F

F
F

= −

= −

=
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EXAMPLE PROBLEM VI-7-16 (Continued) 
 

4.2. Moments about heel of the caisson 
 
Using the recommended uncertainty and bias factors from Table VI-5-55 (UMH = 0.81 and UMU = 
0.72), the overturning moment due to the horizontal force is  
 

 

( ) ( ) ( )

( )( )( )

( ) ( )

( )( )( )

2 2
1 3 1 2 1 2

22 2

2 2

22 2

1 1 12 ' ' 2
6 2 6
1 2 1,677 lb/ft 1,535 lb/ft 28.1 ft
6
10.81 1,677 lb/ft 1,636 lb/ft 28.1 ft 0.9 ft
2

1 1,677 lb/ft 2 1,636 lb/ft 0.9 ft
6

555,630 lb-ft

H MH c c

H

M U p p h p p h h p p h

M

⎡ ⎤= + + + + +⎢ ⎥⎣ ⎦
⎡ ⎤+ +⎢ ⎥
⎢ ⎥
⎢ ⎥= + ⋅⎢ ⎥
⎢ ⎥
⎢ ⎥+ +
⎢ ⎥⎣ ⎦

= /ft

 

 
The overturning moment of the uplift force is given by 
 

 
( )( )( )

2

22

1 
3

0.72 1/ 3 1,423 lb/ft 40 ft 546,430 lb-ft/ft

U MU u

U

M U p B

M

= ⋅

= =
 

 
The compensating moment of the structure weight (net) 
 

 ( )21 '
2G c w wM B g h hρ ρ= −  

 
is the moment formula found in Table VI-5-55 where again, the composite structure unit weight, (ρcg) 
is required.  However, because the caisson cross section is symmetrical, the total force, FG, is 
assumed to act at a horizontal distance B/2 from the back side, so 
 

 ( )( )

1
2
1 40 ft 78,044 lb/ft
2

=1,560,880 lb-ft/ft

G G

G

M B F

M

= ⋅

=  

 
This completes the basic calculation of forces and moments (per unit length) due to the wave loading 
formulations of Goda and Takahashi.  Further analysis requires basic design practices, safety factors, 
and codes, i.e., DESIGN CRITERIA for the engineering evaluation of the assumed structure width, B.  
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EXAMPLE PROBLEM VI-7-16 (Continued) 
 
5. Safety against sliding, overturning, and heal bearing pressures. 
 

5.1. Design criteria 
 
Goda (1985) gave the following coefficients, safety factors as practiced by coastal engineers in Japan.  
Others are possible (see Tables VI-5-62 and VI-5-63).   
 
 Sliding friction coefficient, μ = 0.6 
 Safety factor against sliding, SFs ≥ 1.2 
 Safety factor against overturning, SFo ≥ 1.2 
 Heal bearing pressures, Pe < 8000 – 10,000 lb/ft2 

  Pe max = 12,000 lb/ft2 
 

5.2. Sliding from Equation VI-5-190 
 

 
( )G U

s
H

F F
SF

F
μ −

≡  

 
and is simply the ratio of frictional resistance force to the applied force in the horizontal direction.   
 

 

( )0.6 78,044 lb/ft 21,914 lb/ft
41,958 lb/ft

33,678
41,958
0.80

s

s

SF

SF

−
=

=

=

(WARNING:  Structure unstable in sliding mode) 

 
The structure width with B = 40 ft is too narrow to prevent sliding because SFs < 1.2.   
 

5.3. Overturning from Equation VI-5-191 
 

 G
O

U H

MSF
M M

≡
+

 

which is the ratio of resistive moment due to self-weight to overturning moments.   
 

 

( )
1,560,880 lb-ft/ft

546,430 555,630  lb-ft/ft
1,560,880
1,102,060
1.42

O

O

O

SF

SF

SF

=
+

=

=
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EXAMPLE PROBLEM VI-7-16 (Continued) 
 
which is stable against overturning because SFO exceeds the allowable safety factor, i.e., SFO ≥ 1.2. 
 

5.4. Heel bearing pressure, Pe 
 
See Goda (1985) and other marine foundation design references for eccentric, inclined loadings.  
Assume the seafloor is dense sand and the supporting, core layer material of good bearing capacity.   
 
Define:   
 
 We ≡ net vertical force 
 We ≡ FG - Fu = 78,044 lb/ft – 21,914 lb/ft = 56,130 lb/ft 
 
and  
 
 Me ≡ net moment about heel (positive counterclockwise) 
 Me ≡ MG – Mu – MH = (1,560,880 – 546,430 – 555,630) lb-ft/ft = 458,820 lb-ft/ft 
 
Then Me = We @ te 
 
or 
 
 te ≡ Me/We 
 
where te is the moment arm of the net vertical force.   
 
so 

 458,820 lb-ft/ft 8.17 ft
56,130 lb/ftet = =  

 
Because te ≤ B/3, assume a triangular bearing pressure distribution, with  
 

 2  
3

e
e

e

WP
t

=  

 

 
( )
( )

22 56,130 lb/ft
= 4,580 lb/ft

3 8.17 fteP =  

 
which is within safe bearing capacity.   
 
Note:  If te > B/3 a trapezodal bearing pressure distribution would be assumed with 
 

 e2 t2-3  
B

e
e

WP
B

⎛ ⎞= ⎜ ⎟
⎝ ⎠
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EXAMPLE PROBLEM VI-7-16 (Continued) 
 

5.5. Summary, B = 40 ft caisson width (Tp = 14.0 s) 
 
For the design wave, Hdesign = 1.8 Hm0 and structure dimensions, hw = 29.0 ft, B = 40 ft, this vertical, 
caisson-type jetty is unstable against sliding and stable against overturning.  Heel bearing pressures 
are acceptable.  Several design modifications could be considered to determine a stable caisson width.  
 
Structure width, B, is the key variable because wider structures provide more weight for stability 
against sliding and overturning.  However, the uplift forces and moments also increase, and cost per 
unit structure length also increase.   
 
For the preceding example, keeping everything constant, it turns out that B must be increased to about 
60.3 ft width for  
 
 (SF)s = 1.2 
 

 
5.6. Additional considerations for increased stability.   

 
a. Increasing the jetty crest elevation, hc.  The structure weight could be increased by increasing 

the crest elevation, which was previously set at +9.0 ft (MLLW).  Increasing by 1.0 ft 
increments, +10.0 ft, 11.0 ft, etc., produces ever decreasing stable width, B in a nonlinear 
trend.  

 
b. Increasing the unit weight of the fill material, γs.  The only practical way remaining is to find 

a suitable caisson fill material, e.g., slag from blast furnaces that is more dense and has a 
higher unit weight, γs, than saturated sand (γs = 125 s/ft3).   

 
c. Reliability analyses.  Chapter VI-6 contains tables with partial safety factors for:   

 
 
 Sliding failure, Table VI-6-25 
 Overturning failure, Table VI-6-26 
 Foundation failure (Heel bearing pressure) 
  Table VI-6-23, sand subsoil 
  Table VI-6-24, clay subsoil 
 
The width of the foundation sublay can be extended seaward and the vertical-walled, concrete caisson 
protected by a rubble-mound structure, seaward.  Table VI-5-58 presents changes in the λ1, λ2, λ3 
coefficients in the Goda formula for this case.   
 
 
 

(Sheet 11 of 12) 



EM 1110-2-1110 (Part VI) 
1 Jun 06 

VI-7-80 Example Problems 

 
 
 
 

EXAMPLE PROBLEM VI-7-16 (Continued) 
 

The caisson sections exposed to wave breaking directly on the structure in the surf zone should be 
checked to ensure stability.  Wave heights will be lower so that the same cross-sectional design may 
be sufficient.   
 
 6.0.  Summary 
 
In general, for relatively shallow-water depths, vertical-walled concrete caisson structures are not 
economically competitive with the rubbble-mound structures, but each site is different and should be 
checked.   
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EXAMPLE PROBLEM VI-7-17 
 
FIND:   
 Find the total force per unit lateral length on a vertical baffle breakwater having penetration 
depths of 1/3 and 2/3 of the water depth. The breakwater will protect a mooring facility on Lake 
Michigan.  
 
GIVEN:   
 The following baffle breakwater parameters are defined in Part VI-5, Figure VI-5-61. 
 
 Water depth, h = 15.0 ft. 
 Wall penetration relative to SWL, w = 5.0 ft, 10 ft.   
 Specific weight of fresh water, ρw g = 62.4 lb/ft3.   
 Zeroth-moment wave height at breakwater, Hmo = 3.0 ft. 
 Wave period associated with the spectral peak, Tp = 5.0 s. 
  
SOLUTION:  
 The appropriate wavelength is found using linear wave theory with a depth of h = 15 ft  
and a wave period of Tp = 5 s, i.e., Lp = 96.3 ft.  The corresponding wave number is 
 
 

2π 2π 0.0652 1/ ft
96.3ftp

p
k

L
= = =  

 
Force on a Partially Penetrating Wall:  
 
The first step is to calculate the parameter Fo which represents the significant force per unit length on 
a vertical wall extending all the way to the bottom as determined using linear wave theory.  Fo is 
calculated using Eq. VI-5-163. 

 
Important Note:  The Fo-factor should only be used as part of the calculation for 
partially-penetrating walls (it is a normalizing factor).  Estimates for forces on full-depth 
walls should be calculated using the Goda method detailed in Table VI-5-53. 
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EXAMPLE PROBLEM VI-7-17 (Continued) 
 

  
( )
( )⎥⎥⎦

⎤

⎢
⎢
⎣

⎡
=

hkk
hk

HgF
pp

p
mowo cosh

sinh
ρ  

 

  ( ) ( ) ( )
( ) ( ) ( )

3 sinh 0.0652 1/ ft 15 ft
62.4 lb/ft (3 )

0.0652 1/ ft cosh 0.0652 1/ft 15 ftoF ft
⎡ ⎤⎡ ⎤⎣ ⎦= ⎢ ⎥

⎡ ⎤⎢ ⎥⎣ ⎦⎣ ⎦
 

 
  2,159 lb / ftoF =  
 
Substituting given values of h and Lp and the calculated value of Fo into total force empirical formula 
for partially penetrating vertical walls given by Eq. VI-5-164 yields 
 

( ) 7.0/386.0 −

⎟
⎠
⎞

⎜
⎝
⎛=

pLh

omo h
wFF  

( )
( ) 0.70.386 15 ft/96.3 ft

2,159 lb/ftmo
wF
h

−

⎛ ⎞= ⎜ ⎟
⎝ ⎠

 

 

( )
1.419

2,159 lb/ftmo
wF
h

⎛ ⎞= ⎜ ⎟
⎝ ⎠

 

 
Now substitute the different wall penetration values to find the significant total force at each depth.  
 
w = 5 ft 

( )
1.419

5 ft2,159 lb/ft 454.2 lb/f
15 ftmoF t
⎛ ⎞

= =⎜ ⎟
⎝ ⎠

 

w = 10 ft 

( )
1.419

10 ft2,159 lb/ft 1,214.4 lb/ft
15 ftmoF
⎛ ⎞

= =⎜ ⎟
⎝ ⎠

 

Recall for final design it is recommended that the significant total force be increased by a factor of 
1.8,  
 

modesign FF 8.1=  

This increase corresponds roughly to the Goda-recommended design wave  
 

modesign HHH 8.1250/1 ==  
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EXAMPLE PROBLEM VI-7-18 
 
FIND:   
 Find the total force and moment per unit lateral length on a vertical seawall located inside the 
surf zone on an ocean beach.   
 
GIVEN:   
 The following parameters are defined in Part VI-5, Figure VI-5-71. 
 
 Water depth at breaking, hb = 8.0 ft. 
 Breaking wave height, Hb = 7.0 ft. 
 Still-water depth at vertical wall toe, hs = 5.0 ft. 
 Specific weight of salt water, ρw g = 64.0 lb/ft3.   
   
SOLUTION:  
 The broken wave height at the structure, as represented by the turbulent bore rushing up the 
beach, is estimated using Eq. VI-5-174, i.e., 

 

0.2 0.58 s
w b

b

hH H
h

⎛ ⎞
= +⎜ ⎟
⎝ ⎠

 

 

( ) ( )(5 ft)0.2 0.58 7 ft 3.94 ft
8 ftwH

⎡ ⎤
= + =⎢ ⎥
⎢ ⎥⎣ ⎦

 

The total horizontal force (excluding backfill soil or standing water pressure behind the wall) is the 
sum of the dynamic pressure force (Eq. VI-5-176) and the static pressure force  
(Eq. VI-5-179), i.e., 
 

( )2
22 ws
wwbw

T HhgHhgR ++=
ρρ

 

 

( ) ( ) ( ) ( )
( )

3 3
264.0 lb/ft 8 ft 3.94 ft 64.0 lb/ft

5 ft+3.94 ft
2 2TR = +  

 
1,008.6 lb/ft+2,557.6 lb/ft=3,566 lb/ftTR =  
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EXAMPLE PROBLEM VI-7-18 (Continued) 
 
 
The total moment about the toe of the wall (excluding backfill soil or standing water pressure behind 
the wall) is the sum of the moments due to the dynamic pressure force (Eq. VI-5-177) and the static 
pressure force (Eq. VI-5-180), i.e., 
 

 
2 3

w s w
T d s s

H h HM R h R +⎛ ⎞ ⎛ ⎞= + +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

 

 ( ) ( )3.94 ft 5 ft+3.94 ft1,008.6 lb/ft 5 ft+ + 2,557.6 lb/ft
2 3TM ⎛ ⎞ ⎛ ⎞= ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

 

 ft-lb ft-lb ft-lb7,030 + 7,622 = 14,652
ft ft ftTM =  
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VI-7-6.  Forces on Cylindrical Piles 

EXAMPLE PROBLEM VI-7-19 
 
FIND:   
       Find the total force and moment on a small-diameter cylindrical vertical pile situated in the 
nearshore area of the Atlantic Ocean (salt water).   
 
GIVEN:   
    
 Water depth, d = 16.4 ft. 
 Wave height, H = 9.5 ft  (approx. ¾ Hb). 
 Wave period, T = 8.0 s 
 Cylindrical pile diameter, D = 2.3 ft. 
 Specific weight of salt water, ρw g = 64.0 lb/ft3.   
 Kinematic viscosity of salt water, ν = 1.076(10)-5 ft2/s 
   
SOLUTION:  
 
1.  Estimate drag and inertia force coefficients. 
 
 An estimate of the maximum horizontal velocity under the prescribed wave is found from Stream 
Function theory to vary between 
 
 um = 13.1 ft/s (at crest of wave) 
 
 um = 6.1 ft/s  (at the seabed) 
 
The average maximum velocity of  
 
 um = 9.5 ft/s  (average) 
 
is used for calculation of the pile Reynolds number.    
 
From Eqn. VI-5-307 the pile Reynolds number is calculated as 
 

 
( ) ( )

( )
( )6

-5 2

9.5 ft/s 2.3 ft
2.03 10

1.076 10 ft /s
m

e
u DR
ν

= = =  

 
Figures VI-5-139 to VI-5-143 give plots for drag and inertia coefficients for Reynolds much lower 
than the previous calculation.  In this case, use the guidance given after Figure VI-5-143 for higher 
Reynolds number.  Because Re = 2.03(10)6 is greater than 5(10)5, the drag and inertia coefficients are 
assumed to have constant values given by 
 
 0 7DC .=  
 1 5MC .=  
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EXAMPLE PROBLEM VI-7-19 (Continued) 
 
2.  Estimate force and moment coefficients from nomograms. 
  
 The Coastal Engineering Manual provides two methods for estimating the maximum force 
and moment acting on a cylindrical pile.  One method estimates the individual maximums for the drag 
and inertia forces and moments, and then sums the values.  This method is conservative because the 
two maximums are out of phase.  The preferred method is to estimate the maximum combined drag 
and inertia forces and moment forces using Equations VI-5-300 and VI-5-301, reproduced as follows. 
 

DHgCF wDmm
2ρϕ=  

 
dDHgCM wDmm

2ρα=  
 

Values for the nondimensional coefficients ϕm and αm are taken from the appropriate nomograms 
contained in Figures VI-5-131 to VI-5-138 based on the nondimensional parameter W given by  
Eqn. VI-5-299.  For the values of drag and inertia coefficients in this example, 
 

( )
( )
2.3 ft1.5 0.52

0.7 9.5 ft
M

D

C DW
C H

= = =  

 
Also needed are values of relative wave steepness and relative water depth that are the ordinate and 
abscissa, respectively, of the nomograms.  For this example 
 

( ) ( )2 22

9.5 ft 0.0046
32.2 ft/s 8 s

H
gT

= =  

 

( ) ( )2 22

16.4 ft 0.0080
32.2 ft/s 8 s

d
gT

= =  

 
Figure VI-5-133 was constructed for a value of W = 0.5, and it is the closest to the value of W = 0.52 
calculated for this example.  Using the values for H/(gT2) and d/(gT2), the force coefficient in found 
from Figure VI-5-133 to be 
 

0 32m .ϕ =  
 

Similarly, the moment coefficient for W = 0.5 is found from Figure VI-5-137 as 
 

0 30m .α =  
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EXAMPLE PROBLEM VI-7-19 (Continued) 
 

3. Estimate maximum total force and moment. 
 
Finally, the total maximum force and total maximum moment are calculated as 

 
DHgCF wDmm

2ρϕ=  
 

( ) ( ) ( ) ( )230.32 0.7 64.0 lb/ft 9.5 ft 2.3 ft 2,976 lbmF = =  

 
and 

dDHgCM wDmm
2ρα=  

 
( ) ( ) ( ) ( ) ( )230.30 0.7 64.0 lb/ft 9.5 ft 2.3 ft 16.4 ft 45,752 ft-lbmM = =  

 
The corresponding moment arm is found simply as 
 

 45,752 ft-lbMoment Arm 15.4 f
2,976

m

n

M t
F lb

= = =  

 
which is one foot below the still waterline. 
 
NOTE: 
In this example the calculated value of W was reasonably close to that of Figures VI-5-133 and  
VI-5-137.  For cases when W falls between nomograms, finds values of ϕm and αm from the 
bracketing nomograms and linearly interpolate. 
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VI-7-9.  List of Symbols 

Symbols have been defined in each example problem at the time they are first used or derived. Also see 
VI-5 for symbols. 
 


